SAND BYPASSING at STABILIZED INLETS:

Sustaining Restored Beaches in Broward County

Sand Bypassing

- Used when inlet navigation features block the alongshore drift of sand
- 85% of beach erosion in FL is caused by the interruption of the alongshore drift by stabilized inlets
- Goal of bypassing is to capture sand on updrift side of inlet and move material to downdrift beaches

Sand Bypassing

- Two main types of bypassing
 - <u>Intercept</u>, whereby a device or series of devices continuously or episodically moves material as it arrives.
 - <u>Storage</u>, whereby a deposition area is constructed to capture arriving sand and is periodically excavated. The sand is then piped or transported to target beaches.
- Hybrid or combination systems also exist

Examples of Sand Bypassing Types Intercept - Tweed Head, NSW, Aus

- Material piped across inlet
- Four outlets for sand

• Jet pumps fluidize sand and pumps transport the material to target

Examples of Sand Bypassing Types Weir/Sand Trap (Storage)

Hillsboro Inlet, FL

Examples of Sand Bypassing Types Hybrid Systems – Beach Mining

- Indian River Inlet, DE
- Crane-mounted jet pump
- Sand piped to downdrift beach

DREDGING AREA

- Canaveral Harbor
- Hydraulic cutterhead dredge mines the nearshore beach sand and pumps to downdrift beach

SOUTH JETTY

Canaveral Harbor Sand Bypass Project (II) May, 1998

Sustainable Beaches

Pompano Beach is the Beneficiary of Bypassing at Hillsboro Inlet

SAND BYPASSING at PORT EVERGLADES Historical Studies

- 1963: Corps Countywide Bch Erosion Study
- 1985: Alternative Sand Source Study
- 1988: Reconnaissance-Level Study
- 1994: State-sponsored Inlet Mgmt Plan
- 1997: Economic Update to Inlet Mgmt Plan
- 1999: State adopts Inlet Management Plan
- 2003: Detailed Feasibility Study
- 2006: Engineering/Design, Permitting
- 2008/9: Construction/Operation

CURRENT STUDY ELEMENTS Use of Current Data/Technology

- Detailed Site Investigation
- Review of Historical Data/Constraints
- Quantify Sediment Transport Conditions
 - Historical data
 - Numerical models
- Formulate/Evaluate Alternatives
 - Consider constraints
 - Evaluate
 - Physical performance
 - Effects to adjacent shorelines, inlet
 - Economics

SHORELINE HISTORY NORTH OF PORT EVERGLADES

Bypassing Configuration Recommended in the Inlet Management Plan

- Significant NET Shoreline
 Recession
- Proximity of Sand Trap To Upland Development

ALTERNATIVE FORMULATION - CONSTRAINTS

- COLLECT sufficient volume of sand to justify project Costs
- AVOID adverse impacts to shoreline position, beach use, upland development north of the inlet
- LIMIT infrastructure along north jetty and north shoreline
- PROVIDE clean sand to downdrift shoreline
- AVOID impacts to navigation
 - Channel shoaling
 - Impedance to commercial traffic
 - Cross-currents in navigation channel
- AVOID adverse environment impacts
- AVOID adverse impacts to JUL Beach State Park

SAND BYPASSING MUST INCLUDE

Partial Removal of Spoil Shoal

SAND BYPASSING MUST INCLUDE

- Partial Removal of Spoil Shoal
- North Jetty Extension
- Initial (at least) Rubble Separation
- Activities Only on Public Areas

Concept of Fixed Plant System

- Significant Infrastructure on North Shoreline
- Fixed Pump Location
- Limited Control Over Sand Arriving at Plant
- Rubble/Debris will Limit Productivity
- Frequent Maintenance to Clear Rubble
- Fluctuations in Shoreline Location
- Craters Following Bypassing

SHORE-PARALLEL OFFSHORE SAND TRAP (Alt No. 1)

- **Efficient Sand Collection Rate**
- High Likelihood for Fine-Grained Sands in Sand Trap
- **Persistent Rubble Contamination**
- Shoreline Fluctuations between Dredging
- Steep Beach Slopes Following Dredging

OFFSHORE SAND TRAP at NORTH JETTY (Alt No. 1A)

Minimal Shore Fluctuations

Lower Initial Cost

Potentially Lower Sand Collection Rate

Some Probability for Fine-Grained Sands in Deep Sand Trap

Potential for Rubble Contamination of Sand

WEIR/INTERIOR SAND TRAP (Alt. No. 2)

 Allows Collection of Highest Quality Sediments

Reliable North Shoreline Stability

Least Potential for Long-term
 Rubble Contamination

- Provides Protected Area for Dredging
- Allow Broad Range of Dredge Types and Techniques
- Eliminates Sand Shoaling of Port Channel
- Highest Initial Cost

 Highest Interior Exposure to Wave Action

PUMPOUT and SAND PLACEMENT

SAND BYPASSING ALTERNATIVES COST SUMMARY (2004)

Bypassing Alternative	Initial Construction Cost		Unit Cost of Bypass Sand <i>Including</i> Initial Construction Cost (\$/cy)		Unit Cost of Bypass Sand <i>Excluding</i> Initial Construction Cost (\$/cy)	
1	\$	9,273,000	\$	20.76	\$	16.05
1A	\$	8,904,000	\$	19.06	\$	14.55
2	\$	11,748,000	\$	16.47	\$	10.50

Unit Cost of Sand for current Segment III Project = \$ 24/cy (+/-) (including engineering/environmental monitoring)

SUMMARY – Sand Bypassing At Port Everglades:

- Will benefit navigation, beach management, environment
- Will reduce the demand for remote sand sources
- Will reduce/eliminate potential for reef impacts from dredging
- Will reduce/eliminate shoaling along north side of Port channel
- Will require shoal modification, jetty extension
- May require rock separation to deliver clean sand
- Is likely most feasible with Alternative 1A or 2

NEXT STEPS:

- Formalize contract amendment with Consultant
- Perform additional analyses as requested by State DEP
- Select alternative (1A, 2, or other) to implement
- Develop Design and initiate permitting
- Perform environmental & geophysical inventories and studies
- Seek public input, assemble NEPA documentation
- Acquire permits and build plans & specifications
- Bidding and commencement of construction (late 2008?)

THANK YOU!

