Subwatershed: TR - 26

Site Name: ML RODRIGUEZ / TOTAL GAS

Description of Existing Conditions:

- Large culvert goes under building G Auto Shop
- Rooftop and parking lot drainage goes directly to storm gutter with no treatment.
- Perimeter sand filter & enbankment to gas station prior to discharge to road drain line and down central isle of Auto Shop.
- Conduct pollution prevention and of auto shop to assist w/ secondary containment storage, impervious management to reduce pollutants.

Additional Notes and/or Sketch Information:

Tough site.
FIELD ASSESSMENT NOTES

Subwatershed: 1R-27

Site Name: 1st BANK

Description of Existing Conditions:
Across from McD's at TVH Plaza

Good example of using landscaped area to collect runoff. (There is one ex. curb cut into landscape)

Investigate potential retrofit to enhance landscape area to provide water treatment for entire parking lot via more curb cuts.

Highly visible site.

Additional Notes and/or Sketch Information:
Subwatershed: TURPENTINE RUN

Site Name: CHURCH SCHOOLS TR-28

Description of Existing Conditions:
STEEP!! WOODED AREA DRAINS TO EX DI AT BASE OF ROAD — DIRECT DISCHARGE INTO TURPENTINE RUN AT ~36" CMP

Additional Notes and/or Sketch Information:
Description of Proposed Project:
Direct portion of flow into grassed area in a few locations - but not easy.
- [x] bottom of hill
- [] into basketball court area (redirect concrete line)
- [] open grass area adjacent to driveway

Additional Notes and/or Sketch Information:

Site Priority:
☐ Love it ☐ Has Potential ☒ Not Likely ☐ Enforcement Needed
Subwatershed: **TURP. RUN**

Site Name: **TR-29 HENNHYOT POND**

Description of Existing Conditions:

- Called out in DFW Wetlands Conservation Plan for protection
- Consider land conservation options
- Drainages to pond should be protected from future development

Additional Notes and/or Sketch Information:
Subwatershed: Turpentine Run

Site Name: Edith Williams Alternative Academy (TR-30)

Description of Existing Conditions:

School has no real drainage issues, parking lot in front drains to road. Some roofs are directed to cisterns. Gut runs behind school fence and a wooden buffer. Some grind school is on septic.

Have had to pay money to fill up cisterns purchased water

Additional Notes and/or Sketch Information:

[Sketch showing a soakaway, septic tank, and school with playground indicated by 'ball court']
Description of Proposed Project:

- Hook up rest of roof to the system.
- Tight space, not much opportunity for stormwater retrofits of parking lot.

Additional Notes and/or Sketch Information:

DR. LEONARD RICHARDSON
ASSISTANT PRINCIPAL

Site Priority: ☑️ Love it ☐ Has Potential ☐ Not Likely ☐ Enforcement Needed
Subwatershed: TR-31
Site Name: SMITHBAY RD / FT. MYLNER PLAZA

Description of Existing Conditions:

OPEN AREA ADJACENT TO FT. MYLNER PLAZA AND PRICESMART DRIVE THAT COULD BE EXPANDED TO MANAGE HIGH FLOWS FROM GUT AND TREAT RUNOFF FROM SMITHBAY RD.

- NEED TO DEFINE EX. WETLAND BOUNDARY

- CONCEPT IS TO DIVERT SMITHBAY RD DRAINAGE VIA NEW CATCH BASINS AND CONCRETE SWALES ON ROAD INTO A STORMWATER WETLAND

Additional Notes and/or Sketch Information:

FLOW TO DISCHARGE TO GUT. MAY BE POSSIBLE DEPENDING ON SPACE AVAILABLE, TO DIVERT HIGH FLOWS FROM GUT INTO WETLAND.

* NEED TO CONFIRM EX. WETLAND BOUNDARY AND PROPERTY OWNERSHIP.
Description of Proposed Project:

Additional Notes and/or Sketch Information:

Site Priority: □ Love it □ Has Potential □ Not Likely □ Enforcement Needed
TR-31. Price Smart / Smith Bay Road — Stormwater Retrofit

Site Description
Immediately south of the entrance to Price Smart grocery, there is a vacant parcel that currently accepts a portion of the runoff from Smith Bay Road. The runoff that currently flows onto the vacant property is untreated and reaches it through an existing curb cut along the southern side of Smith Bay Road. The vacant lot consists of wetland areas and the western branch of Turpentine Run. This area is frequented by local residents because it abuts a popular outdoor market, as well as the Fort Mylner Plaza. This site offers opportunities for public education about stormwater management and resource area protection.

Proposed Concepts
A stormwater treatment facility is proposed in the vacant lot, south of Smith Bay Road. Depending on the depth to the groundwater table, either a constructed wetland or bioretention facility is recommended. Even though the majority of Smith Bay Road is super-elevated away from the vacant lot, there appears to be adequate gradient to capture the roadway runoff in a below-grade drainage system and pipe it to the proposed practice. The remaining drainage area will drain to the practice via the existing curb cut. A drainage easement may be required from the owner of the vacant parcel in order to construct such a facility but it is possible that the system could be over-sized to accommodate runoff from any future development on the lot.

Practice Sizing/Design Considerations
The constructed wetland would be sized to treat up to the first 1.25 inch of runoff from the contributing impervious area. The total drainage area to the site would be approximately 2.0 acres, with 0.7 acres of that total being impervious surface. Available surface area for the proposed practice is about 3,000 SF, sufficient for effective water quality treatment. The outflow from the system would be designed to limit discharge rates and down-gradient channel erosion of Turpentine Gut.

Pollutant Removal
 Constructed wetlands are expected to remove 85% TSS; 48% TP; 30% TN; and 60% bacteria (RI Manual, 2010). This assumes the full design treatment volume is provided.

Next steps
- Complete a topographic survey of the area. Determine if there are any site utility conflicts and delineate existing wetland;
- Conduct test pits to verify subsurface soil conditions and depth to groundwater;
- Contact property owner to investigate willingness to participate in design discussions; and
- Map existing resource area boundaries and buffers.

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Drainage Area (ac)</th>
<th>% Impervious</th>
<th>Design Treatment Volume (cf)*</th>
<th>Practice Area Required (sf)*</th>
<th>Practice Area Available (sf)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR-31</td>
<td>2.0</td>
<td>35</td>
<td>3,200</td>
<td>1,300</td>
<td>3,000</td>
</tr>
</tbody>
</table>

*Design Treatment Volume: Constructed Wetlands, 0.015*DA; DA = drainage area (sf)
*Practice Area Required is calculated based on practice-specific design assumptions.
*Practice Area Available is estimated from available mapping. Actual practice area may be adjusted as needed during pre-construction.
FIELD ASSESSMENT NOTES

Subwatershed: **TURPENTINE RUN**

Site Name: **PRICESMART TR-32**

Description of Existing Conditions:

- Clean up debris/trash/cans, etc
- Remove pavement - possible pervious pavers
- Plant shade/canopy cover
- Install linear bios
- Investigate ex. facility retrofit potential
- Open method here any way to take additional runoff from road?

Additional Notes and/or Sketch Information:

PRIVATE PROPRIETY

MAY BE EASY RETROFIT OF EX. FACILITY TO IMPROVE WQ. TREATMENT. NEED TO GET PLANS.
FIELD ASSESSMENT
NOTES

Subwatershed: Turpentine Run

Site Name: E. B. Oliver Elementary School

TR-33

Description of Existing Conditions:

- Used to be water plant
- Flooding in buildings on slopes
- PTA currently plans to do a community garden in central pod
- Runoff comes down from side of main building adds to load in central green existing drain inlet, discharges on hillslope
- Ask Mr. Liburd about historic location or location for discharge from side in central island cul-de-sac
- School is on sewer

Additional Notes and/or Sketch Information:

Emanuel Benjamin Oliver Elementary

Jamon E. Liburd
Assistant Principal

340-775-2000 x2102

Government of the United States Virgin Islands
DEPARTMENT OF EDUCATION
St. Thomas - St. John District
JAMON E. LIBURD
Assistant Principal

Emanuel Benjamin Oliver Elementary
1834 Kongens Gade
St. Thomas, V.I. 00802
Email: jliburd@sttj.k12.vi

February 27-March 2, 2012
Description of Proposed Project:

- Rain garden in central area
- Bioretention in front cul-de-sac to capture portion of parking lot and entrance
- Bioretention lot & loading dock

Additional Notes and/or Sketch Information:

Site Priority: [] Love it [] Has Potential [] Not Likely [] Enforcement Needed

STEER Watersheds Assessment and Planning Project – Field Form
February 27-March 2, 2012
Subwatershed: TERPENTINE
Site Name: Community Center Willy George [TR-34]

Description of Existing Conditions:

"Ponding to Fast of Entrance -> Possible
AREA FOR BMP Retrofit

To West of Entrance SW from Ponding
AREA Collects Along Ditch and may in high
Ponding Area & Flows over wall (4.5')
Then drains at slope to a grass area
along Building and Vegetation behind
Building (thick), Possible source of Stepped
System.

SW System Retrofits would be more educational
Then Watershed WP Enhancement AS
Property is in the upper peaks of the Watershed.

Additional Notes and/or Sketch Information:
Subwatershed: Turpentine Run

Site Name: TR-35 Turp. Road Culvert (Upper)

Description of Existing Conditions:

The biggest complaint received by public is flooding at road crossings on Turpentine Run. At this location is a 10x8 culvert that appears to be undersized for the amount of area draining to it.

Confluence of two major creeks occurs at this location.

There is not a lot of space available for larger culverts probably need to replace with a bridge.

Additional Notes and/ or Sketch Information:

Culvert approx. 4x8, but unable to measure adequately at the time x 18" to road surface from top of culvert. Not much room to make larger vertically.
TR-35, 37, & 40. Turpentine Run Road Culverts—Drainage Improvements

Site Description
Turpentine Run Road parallels and crosses Turpentine Run for much its length and as a result, the condition of the roadway and the gut can be intertwined. For instance, undersized drainage infrastructure will contribute to erosion of the receiving channel. When that receiving channel abuts the street it is servicing, the erosion can jeopardize the integrity of the roadway. This scenario is occurring in many locations along Turpentine Run Road, several of which have created flooding and public safety hazards.

Proposed Concepts
Approximately one-half mile north of the main entrance to Heavy Materials, Turpentine Run flows beneath Turpentine Run Road. There is a culvert at this location (TR-35) that is reportedly overwhelmed during significant rain events. At the public meetings that were held in February 2012, many residents commented on the observed roadway flooding at the site. The culvert is approximately 4’x8’ which is not sufficient for handling large storm flows given the hydrology of the gut. Increasing the culvert size or constructing a bridge in its place would offer the most improvement for flow capacity and for better managing the flooding. One significant design constraint is the elevation of Turpentine Run Road at the culvert location. There is only ~18” above the culvert to the top of the roadway, therefore limiting the improvements to options that create a wider channel cross-section. Installing a bridge would be the least flow restrictive option but it will likely be the most expensive to construct and cause the longest traffic delays. An alternative to a bridge would be to target better floodplain drainage by installing multiple small culverts adjacent to the existing culvert. This option may provide a reasonable balance between effectiveness and cost.

About one-quarter mile south, near the northern entrance to Heavy Materials, Turpentine Run crosses Turpentine Run Road again through a 48-inch diameter corrugated metal pipe (CMP) at TR-37. Velocities at the downstream end of the culvert are so great that a large scour pool has formed and the culvert is protruding 10-15 feet from the roadway embankment. Lack of and deteriorating roadway drainage infrastructure has exacerbated the problem. An incomplete concrete channel has caused an erosion gully to form leading into the gut. Sedimentation in the gut is a problem, both from erosion and from the dirt driveway leading to Heavy Materials. Design improvements should include: (1) upgrading and properly sizing the culvert beneath Turpentine Run Road, (2) stabilizing the stream bank and bed downstream of the culvert, (3) and repairing the concrete drainage channel that empties into the gut and providing adequate energy dissipation.

Across from the main entrance to Heavy Materials is a third location where inadequate drainage infrastructure has caused severe impacts to Turpentine Road (TR-40). Here runoff from the steep roads of the Mariendahl neighborhood collects and flows underneath Turpentine Road through a 24-inch diameter CMP. Due to part in the likely undersized culvert, poor channel alignment, and high velocity storm flows, undermining of the roadway has occurred. This has created a safety hazard not only to vehicles but also pedestrians. Pedestrians now have to walk into the roadway to maneuver around the resulting scour hole. Design improvements may include a combination of increasing the culvert size, relocating it to provide better channel alignment, and providing runoff energy dissipation up-gradient of the culvert.
Stormwater should be managed strategically throughout the Mariendahl neighborhood to attenuate the high energy flows before they reach Turpentine Run Road. When velocities are reduced, erosion potential also decreases.

Practice Sizing/Design Considerations

When feasible, culverts should be sized to adequately pass at least the relevant design recurrence interval storm. In the case of the two culverts discussed that serve the main Turpentine Run channel, consideration should be given to balancing both high and low flows for environmental reasons versus simply installing the largest culvert possible. Traffic management (both vehicular and pedestrian) is likely to be the most challenging obstacle to overcome during the design and construction phases. All proposed designs should be coordinated with the DPW or DOT to make sure the concepts fit with any long-term goals that may exist.

Next steps

- Complete a topographic survey of the area. Determine if there are any site utility conflicts;
- Determine contributing drainage areas and size new culverts accordingly;
- Conduct in-stream flow monitoring for use in the calibration of stream simulation models;
- Investigate contributing watersheds to identify possible up-gradient drainage controls to reduce channel flows;
- Discuss design concepts with the DPW.

TR-35 culvert. USGS gauging station is upstream from here.

TR-40 showing hazardous conditions below Mariendahl neighborhood.
Concrete channel and scour downstream of culvert at TR-37.
Subwatershed: TURBINE RUN

Site Name: TR-3 AUTO SALVAGE

Description of Existing Conditions:

Area is well-kept and organized. There appears to be no secondary containment for oil. There is a ditch that runs thru the property but appears to be fairly stable & vegetated.

Consider pollution prevention planning to make sure veg. buffer is protected.

Additional Notes and/or Sketch Information:

see aerial
Subwatershed: **TURP. RUN**

Site Name: **TR-37 TURP. RD. CULVERT (M10)**

Description of Existing Conditions:

- Piped culvert of 48" diameter CRP
- Large scour hole evident downstream
- Complete channel from road is incomplete and erosion is occurring above culvert
- Sediment leading to cut evident from erosion is possibly from sed. transport from area

High priority.

Additional Notes and/or Sketch Information:
Subwatershed: Turpentine Run

Site Name: TR-39 Best Carwash/Best Tires

Description of Existing Conditions:

Carwash drains to road, but carrying soap & cleaning fluids along with oils and automotive fluid.

Recommend providing formal washing area (with berms) and drains to sewer.

Additional Notes and/or Sketch Information:
Subwatershed: Turpentine Run
Site Name: Heavy Materials TR-38

Description of Existing Conditions:

- No stormwater management
- Direct discharges from concrete truck filling station
- Leaking septic pipes / septic discharges
- Human waste area along gully bank
- Heavy sedimentation in gully from stockpiles/runoff
- Settling basin overtops (very muddy) and forms overland to gully, only had fence protective about (currently filled in).
- No containment for asphalt / oil facilities
- Major earth change activities

Additional Notes and/or Sketch Information:
Site Description
Heavy Materials, LLC operates a quarry facility on Turpentine Run Road that supplies construction aggregates, masonry blocks, and ready-mix concrete. It is one of the largest facilities of its kind in the U.S.V.I. The quarry consists of approximately 23 acres of disturbed land. The magnitude of the operation alone gives it the potential for significant impact to surrounding resource areas. All precipitation that runs off the site ultimately travels northeast to Turpentine Run. Erosion control and runoff management practices on the property were found to be either poorly maintained or non-existent. Numerous opportunities for site improvements were observed that would help to reduce sediment and pollutant discharges.

Proposed Concepts
Water is commonly used in the production of aggregate and concrete products. For this reason, at least four settling ponds can be found on the Heavy Materials property for removing sediment particles from the facility process water. In order for the settling ponds to be effective, they must be sized appropriately according to influent flow rates and desired settling times. The ponds must also be periodically maintained to remove accumulated sediments. At the time of the site walk, the most down-gradient settling pond was observed to be overtopping its banks and was flowing across the access drive to its ultimate discharge point in Turpentine Run. Proposed strategies for preventing pond overtopping include increasing the available storage within the setting pond and modifying the pond outlet control system to handle the appropriate flow rate. Furthermore, settling ponds do little for removing the fine, suspended particles from water. Consequently, filtration and/or flocculation processes are recommended in conjunction with the existing settling strategies.

Proper sediment containment was also lacking at the concrete truck filling stations on the Heavy Materials property. The process for producing concrete involves mixing water with cement and aggregate. During the filling process, water was allowed to spill from the truck, creating a stream of cement slurry that was flowing directly into Turpentine Run with little or no treatment. A small containment bay was observed in one location near ghat but the flow of slurry at the time of observation was much greater than the capacity of the bay. Impacts from this process were observed in Turpentine Run at and downstream of the truck filling station, including cement deposits and highly turbid stream flows.

Bacterial pollution was observed along the banks of Turpentine Run at the Heavy Materials facility. A latrine, of sorts, was discovered near concrete truck filling station. Human waste was present along the banks of Turpentine Run in close proximity to the cement slurry flows.

Practice Sizing/Design Considerations
In order to reduce the long-term environmental impacts of the Heavy Materials facility, a more complete investigation of the operational processes and planning measures is necessary. Only then can a complete set of future goals and strategies be developed. However, small steps can be taken in the near-term to reduce the extent of the untreated discharges currently entering Turpentine Run. At a minimum, erosion control practices and properly sized sediment containment bays could be installed. Sizing of the proposed treatment or containment practices, either in the long- or near-term, might also consider future site expansion and increased material production.
Next steps

- Meet with the facility operations manager to discuss the current and future plant processes;
- Develop goals and strategies to adequately manage and treat the facility process water;
- Develop a plan and schedule for construction and installation of agreed-upon management strategies;
- Educate the Heavy Materials staff on the importance of protecting the sensitive resource areas that abut the property.
Subwatershed: TR-40

Site Name: MAVENdal Neighborhood / TURP ROAD CULVERT (lower)

Description of Existing Conditions:

Very steep roads. No drainage infrastructure.

Drainage flows down roads to intersection

in Turpentine Run Rd. where it results

in gul erosion and road flooding

at undersized culverts. Road is

being undermined.

24" culvert is undersized and misaligned

DEAD/BOY IN WOAT

Additional Notes and/or Sketch Information:
Description of Proposed Project:

High priority to address flooding per stakeholder meeting recommendations.

I need to go back into the neighborhood and look for opportunities to disconnect runoff.

Additional Notes and/or Sketch Information:

Site Priority: □ Love it □ Has Potential □ Not Likely □ Enforcement Needed
Subwatershed: **TURPENTINE RUN**

Site Name: **TR-41 EQUIPMENT STORAGE**

Description of Existing Conditions:

This is a dumping area and area of outdoor storage. Lots of trash and debris clumped near site. Material stockpiles in no ESC. Barrels of oil sitting open were observed.

- Need to clean up & prevent further dumping
- Take used oil to Bovoni for recycling / lower stockpiles.

Additional Notes and/or Sketch Information:
FIELD ASSESSMENT
NOTES

Subwatershed: Turpentine Run

Site Name: TR-42 / TR-43 Cheyenne's Exc.

Description of Existing Conditions:

There are a number of places along road where dumping of materials and sediment along girt is evident.

TR-42. Dumpster / collection stations should be retrofitted to provide covered storage and containment to prevent dumping in buffer / girt.

TR-43 - Consider providing stabilized construction entrance (look red) and silt fence along perimeter to prevent sediment from discharging off-site.

Additional Notes and/or Sketch Information:

Soil stockpiles in Parking area should be stabilized (e.g. covered or with silt fence perimeter).
Subwatershed: Turpentine Run

Site Name: TR-44 NADIR BRIDGE PARK
"BRIDGE TO NOWHERE" / TR-55 Truck disposal area

Description of Existing Conditions:

SEE WHITE UP

Additional Notes and/or Sketch Information:

SEE ATTACH
Site Description
Nadir Bridge Park is a popular recreational site that serves many purposes for the surrounding community. The park offers a location for residents to play sports, barbeque, and organize for a variety of social events. These activities are hampered during rain events due to poor drainage and standing water. The park currently accepts untreated runoff from Mariendahl Road and the surrounding neighborhoods. The runoff causes flooding in the park because it is isolated from Turpentine Run by a two-three foot high flood-control concrete wall. The lack of drainage infrastructure creates a pond in the park until the water evaporates or infiltrates. Moreover, the concrete wall is part of a ¾ mile long concrete lined segment that acts as a barrier to fish passage and eliminates any natural connection between the gut and the floodplain. Nadir Bridge Park offers opportunities for restoring the Turpentine Run riparian corridor while also enhancing public interest and recreation.

Proposed Concepts
Nadir Bridge Park is approximately two acres in size. Although much of the park is used for recreation, a significant portion is either unutilized or poorly controlled. With better control of traffic patterns in the park, drainage improvements such as bioretention areas could be installed to treat runoff from Mariendahl Road and the park. By converting the travel lanes and parking areas to pavement or gravel, soil erosion could be minimized. There is also ample space near the gut to restore floodplain connectivity and vegetation if the eastern-face of the concrete channel were removed. The bottom of the concrete channel could also be removed to provide deeper flows and improved fish passage.

Practice Sizing/Design Considerations
The bioretention areas would be sized to treat up to the first 1.25 inches of runoff from the contributing impervious area. The available surface area at this location is approximately 6,000 SF which substantially exceeds the minimum surface area recommended for effective treatment. Any additional runoff that enters the bioretention areas will pass through an overflow structure and discharge into the gut.

An important consideration for the gut & floodplain restoration components is the stability of the concrete wall on the western bank of the gut if the existing concrete channel is modified. A footing for the wall will have to be designed that can withstand scour from the flow of the gut.

Any proposed improvements to the park area should be coordinated directly with the roadway design plans for the new Nadir Bridge. The drainage improvements and gut restoration features should be sited to avoid potential conflicts with the future roadway traffic patterns. It is also important to engage the community in the park design so there is a complete understanding of how the park is currently used and what the key features are for all stakeholders.

Pollutant Removal
Bioretention areas are expected to remove 90% TSS; 30% TP; 55% TN; and 70% bacteria (RI Manual, 2010). This assumes the full design treatment volume is provided.

Next steps
- Review the existing design plans for the Nadir Bridge intersection. Site proposed drainage improvements and
park amenities to accommodate the future road layout;
- Complete a topographic survey of the area. Determine if there are any site utility conflicts;
- Conduct test pits to verify subsurface soil conditions and depth to groundwater;
- Engage the community for input of the proposed park design and layout.

Nadir Bridge Park, 3/22/2012
(Source: Frank Galdo)

<table>
<thead>
<tr>
<th>Site ID</th>
<th>Drainage Area (ac)</th>
<th>% Impervious</th>
<th>Design Treatment Volume (cf)*</th>
<th>Practice Area Required (sf)*</th>
<th>Practice Area Available (sf)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>TR-44</td>
<td>3.1</td>
<td>40</td>
<td>5,600</td>
<td>5,600</td>
<td>6,000</td>
</tr>
</tbody>
</table>

*Design Treatment Volume: $V = (1.25')(l)/12; l =$ impervious area (sf)
*Practice Area Required is calculated based on practice-specific design assumptions.
*Practice Area Available is estimated from available mapping. Actual practice area may be adjusted as needed during pre-construction.
Subwatershed: **TURPENTINE RUN**

Site Name: **LIMA PROPERTY (TR-46)**

Description of Existing Conditions:

Across street from Bovoni Neighborhood is an open parcel full of trash.

DN is doing roadwork and potential constructed wetland at this site could treat road runoff and serve as stormwater BMP for neighborhood. Property owner has been interested in cons. easement for parcel. Could turn into a park?

Additional Notes and/or Sketch Information:
Subwatershed: Turpentine Run

Site Name: Clinton Fathers Race Track

Description of Existing Conditions:

Active horse track - center of track is wetland area. Sediment and seeding from track into central wetland.
Piles of horse waste observed at disposal site to east of track.

Proposal:
1. Conduct pollution prevention investigation. Find stormwater permit SWPPP for confined animal operations - particularly waste disposal.
2. Investigate potential to use exterior if track as wetland, stormwater retention to manage area across road. Include sediment forebay along outer edge.

Additional Notes and/or Sketch Information:

3. Options for smaller practice in the upland portion of site.

Signature: [Signature]
Subwatershed: **TR-48**

Site Name: **TRASH COLLECTION / DUMP STATION**

Description of Existing Conditions:

This site is constant source of trash dumping (and being blown by wind) into mangroves/wetland behind dumpsters.

It would make a highly visible site to showcase alternative collection station design—
- fencing in back to prevent wind blow/overflow
- covered area for rollaways to reduce rain/trash contact.
- posting of signage for special collection days or recycling efforts of viewers.

Additional Notes and/or Sketch Information:
Subwatershed: T2-49

Site Name: KAYAK TOURS

Description of Existing Conditions:

- Parking area and building are in the floodplain. Not good site for retrofitting - consider pollution prevention activities.
- Oil & grease
- Marine debris
- Vessel removal
- Good location for watershed-related signage (although audience is primarily tourists)

Additional Notes and/or Sketch Information: