Investigator:
- Name*: Dr. Christopher Sabine
- Organization: NOAA/PMEL
- Address:
  NOAA/PMEL
  7600 Sand Point Way NE
  Seattle Washington, 98115 USA
  Phone: 206-526-4809
- Email: chris.sabine@noaa.gov

Dataset_Info:
- Dataset_ID*: Stratus_85W_20S_Jan2010_Jul2010
- Submission_Dates:*
  - Initial_Submission: 20120420 (YYYYMMDD)
  - Revised_Submission: (YYYYMMDD)

Cruise_Info:
- Experiment:
  - Experiment_Name*:
  - Cruise:* 
    - Cruise_ID: (EXPOCODE)
    - Section: (Leg)
  - Geographical_Coverage:* 
    - Geographical.Region:
    - Westernmost_Longitude:
      Enter decimal fractions of degrees:
or Degrees, Minutes, Seconds:
    - Easternmost_Longitude:
      Enter decimal fractions of degrees: -85.40 (+ = E, - = W)
or Degrees, Minutes, Seconds:
    - Northernmost_Latitude:
      Enter decimal fractions of degrees: -19.60 (+ = N, - = S)
    - Southernmost_Latitude:
      Enter decimal fractions of degrees:
  - Temporal_Coverage:
    - Start_Date: 20100119 (YYYYMMDD)
    - End_Date: 20100707 (YYYYMMDD)
- Vessel:* Mooring platform
  - Vessel_Name:
  - Vessel_ID:
  - Country:
  - Vessel_Owner:

Variables_Info:
- Variable:
  - Variable_Name and Description*:
  - \( x_{\text{CO}_2} \text{ SW (wet) (umol/mol)} \) - Mole fraction of \( \text{CO}_2 \) in air in equilibrium with the seawater at sea surface temperature and measured humidity.
  - \( \text{CO}_2 \text{ SW QF} \) – Quality Flag for \( x_{\text{CO}_2} \text{ SW (wet)} \).
  - \( \text{H}_2\text{O} \text{ SW (mmol/mol)} \) - Mole fraction of \( \text{H}_2\text{O} \) in air from equilibrator.
  - \( x_{\text{CO}_2} \text{ Air (wet) (umol/mol)} \) - Mole fraction of \( \text{CO}_2 \) in air from airblock, 4 feet above the sea surface at measured humidity.
  - \( \text{CO}_2 \text{ Air QF} \) – Quality Flag for \( x_{\text{CO}_2} \text{ Air (wet)} \)
  - \( \text{H}_2\text{O} \text{ Air (mmol/mol)} \) - Mole fraction of \( \text{H}_2\text{O} \) in air from airblock, 4 feet above the sea surface.
• Licor Atm Pressure (hPa) – Atmospheric pressure at the airblock, 4 feet above the sea surface
• Licor Temp (C) – Temperature of the Infrared Licor 820 in degrees Celsius
• % O₂ - The percent oxygen of the surface seawater divided by the percent oxygen of the atmosphere at 4 feet above the sea surface. Disclaimer: The oxygen measurement is made in the equilibrated air. We have found that the oxygen does not come to complete equilibrium so any rapid changes in oxygen do not get properly captured using this system. Therefore, we tend to use the oxygen data only as a qualitative sense of the biology. It is not a quantitative measure.
• SST (C) - Sea Surface Temperature collected by WHOI/UOP. Data from the Stratus Ocean Reference Station were made available by Dr. Robert Weller of the Woods Hole Oceanographic Institution; these data were collected with support from the Pan American Climate Study and Climate Observation Programs of the Office of Global Programs, NOAA Office of Oceanic and Atmospheric Research, Grants NA17RJ1223, NA17RJ1224, and NA17RJ1225. WHOI/UOP provide internally recorded SST data at 1 minute resolution. The sea surface temperature collected during the equilibration period is reported in this dataset. WHOI/UOP advises to check the WHOI site at the time of use for the most accurate data available.
• Salinity – Sea Surface Salinity collected by WHOI/UOP. Data from the Stratus Ocean Reference Station were made available by Dr. Robert Weller of the Woods Hole Oceanographic Institution; these data were collected with support from the Pan American Climate Study and Climate Observation Programs of the Office of Global Programs, NOAA Office of Oceanic and Atmospheric Research, Grants NA17RJ1223, NA17RJ1224, and NA17RJ1225. WHOI/UOP provide internally recorded salinity data at 1 minute resolution. The salinity collected during the equilibration period is reported in this dataset. WHOI/UOP advises to check the WHOI site at the time of use for the most accurate data available.
• xCO₂ SW (dry) (umol/mol) – Mole fraction of CO₂ in air in equilibrium with the seawater at sea surface temperature (dry air).
• xCO₂ Air (dry) (umol/mol) – Mole fraction of CO₂ in air at the airblock, 4 feet above the sea surface (dry air).
• fCO₂ SW (sat) uatm – Fugacity of CO₂ in air in equilibrium with the seawater at sea surface temperature (100% humidity). Since the measurements are taken at the sea surface, warming calculations are not necessary.
• fCO₂ Air (sat) uatm – Fugacity of CO₂ in air at the airblock, 4 feet above the sea surface (100% humidity).
• dfCO₂ – Difference of the fugacity of the CO₂ in seawater and the fugacity of the CO₂ in air (fCO₂ SW - fCO₂ Air).

**Method_Description:**

- **Equilibrator_Design:**
  - Equilibrator_Type: (show pick list) Bubble Equilibrator
  - Equilibrator_Volume: (L) N/A
  - Water_Flow_Rate: (L/min) N/A
  - Headspace_Gas_Flow_Rate: (L/min) ~600 cc/min
  - Vented: (show pick list) Yes
- **Measurement_Method:**
  - Absolute, non-dispersive infrared (NDIR) gas analyzer
- **Manufacturer_of_Calibration_Gas:**
  - NOAA Earth System Research Laboratory (ESRL)
- **CO₂_Sensors:**
  - CO₂ Sensor:
    - Manufacturer: Licor
    - Model: Environmental_Control: LI-820
    - Resolution: 0.01 ppm
    - Uncertainty: < 2.5% of reading with 14 cm bench (stated) <1.5 ppm determined in lab
- **CO₂ Sensor Calibration:** (For each calibration gas, document traceability to an internationally recognized scale, including date and place of last calibration. Include uncertainty of assigned value.)
  At the beginning of each sample, the instrument self-calibrates using a zero and high standard. The zero standard is generated by cycling a small amount of air through a soda lime chamber. The high standard is from a cylinder of calibrated standard reference gas, 473.39 umol/mol, from ESRL. ESRL standards are traceable to WMO x93 scale with a stated reproducibility of 0.06 micromole/mole.

- **Other Sensors:**
  - **Oxygen Sensor**
    - Manufacturer: Maxtec
    - Model: Max-250
    - Resolution: ± 2.0% Full Scale over operating temperature range
    - Calibration: (For each sensor of pressure, temperature, and salinity, document traceability to an internationally recognized scale, including date and place of last calibration.)
      Factory calibrated before purchase. Recalibrated to sea level atmospheric air every 7 days.

- **Other Sensors:**
  - **Humidity Sensor**
    - Manufacturer: Sensirion
    - Model: SHT71
    - Resolution: 0.01 %
    - Uncertainty: Measurement range: 0-100% RH
      Absolute. RH accuracy: +/- 3% RH (20-80% RH)
      Repeatability RH: +/- 0.1% RH
    - Calibration: (For each sensor of pressure, temperature, and salinity, document traceability to an internationally recognized scale, including date and place of last calibration.)
      Factory calibrated before purchase.

- **Method References:** (Publication(s) describing method)

- **Additional Information**

  - All measurements are at sea surface temperature and atmospheric pressure.
  - During the equilibration cycle, a closed loop of air equilibrates with seawater for 10 minutes. Once the equilibration period is complete, the pump stops and the system opens to the atmosphere allowing the pressure to equilibrate with atmospheric pressure. Measurements are recorded for 30 seconds at 2 hertz and then averaged.
  - During the air cycle, fresh air is pumped through the detector for 1 minute. Once the pump stops, the system opens to the atmosphere allowing the pressure to equilibrate with atmospheric pressure. Measurements are recorded for 30 seconds at 2 hertz and then averaged.
  - The gas streams for both the air cycle and equilibrator cycle are partially dried before entering the detector. The values listed as wet xCO₂ generally have relative humidity levels ranging from 40 to 80 percent. The humidity levels increase over the course of a deployment.
Sampling occurs every 3 hours. The infrared detector is calibrated at the beginning of every sampling period. Averaged data and standard deviations for each measurement are transmitted back daily.

To calculate the dry measurements, the water mole fraction in the Licor detector must be known. A relative humidity sensor is located immediately downstream of the detector.

As part of the QC process, each data set is compared with the Marine Boundary Layer (MBL) data from GlobalView-CO$_2$. The data from this deployment were $-1.7 \pm 0.5$ umol/mol on average of the MBL data. Therefore a correction of +2 was applied to the xCO$_2$ (wet) data.

GLOBALVIEW-CO$_2$: Cooperative Atmospheric Data Integration Project - Carbon Dioxide. CD-ROM, NOAA ESRL, Boulder, Colorado [Also available on Internet via anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW], 2010

During the QC process, an adjustment to the Licor pressure is also made based on each sensor’s bias to barometric pressure as measured in the lab. For this system, the Licor pressure was adjusted by -0.21 kPa.

No data = -9.999 or -999

- Data_set_References: (Publication(s) describing data set) None

- Citation: (How to cite this data set) Sabine, C., A. Sutton, and S. Maenner. 2012. High-resolution ocean and atmosphere pCO$_2$ time-series measurements from mooring Stratus.

- Data_Set_Link:
  - URL*: http://www.pmel.noaa.gov/co2/story/Stratus
  - Label*: PMEL CO2 Group - Stratus mooring
  - Link_Note: (Optional instructions or remarks)

Quality Flags definitions:

2 = Acceptable measurement;
3 = Questionable measurement;
4 = Bad measurement
5 = Not reported;
9 = Sample not drown for this measurement from this bottle.

Quality Flag Log for this dataset.

<table>
<thead>
<tr>
<th>Date</th>
<th>Measurement</th>
<th>Value (Dry)</th>
<th>Flag</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/9/2010 0:17</td>
<td>xCO2_SW</td>
<td>420.6432877</td>
<td>3</td>
<td>CO2 data submitted was adjusted by + 2 ppm b/c span calibration was off as predicted by change in Licor temperature</td>
</tr>
<tr>
<td>2/9/2010 0:17</td>
<td>xCO2_Air</td>
<td>384.90694</td>
<td>3</td>
<td>CO2 data submitted was adjusted by + 2 ppm b/c span calibration was off as predicted by change in Licor temperature</td>
</tr>
<tr>
<td>2/13/2010 21:17</td>
<td>xCO2_SW</td>
<td>423.8637741</td>
<td>3</td>
<td>CO2 data submitted was adjusted by + 2 ppm b/c span calibration was off as predicted by change in Licor temperature</td>
</tr>
<tr>
<td>2/13/2010 21:17</td>
<td>xCO2_Air</td>
<td>384.9618239</td>
<td>3</td>
<td>CO2 data submitted was adjusted by + 2 ppm b/c span calibration was off as predicted by change in Licor temperature</td>
</tr>
<tr>
<td>2/18/2010 0:17</td>
<td>xCO2_SW</td>
<td>416.7836481</td>
<td>3</td>
<td>CO2 data submitted was adjusted by - 2 ppm b/c span calibration was off as predicted by change in Licor temperature</td>
</tr>
<tr>
<td>2/18/2010 0:17</td>
<td>xCO2_Air</td>
<td>384.5454033</td>
<td>3</td>
<td>CO2 data submitted was adjusted by - 2 ppm b/c span calibration was off as predicted by change in Licor temperature</td>
</tr>
<tr>
<td>2/19/2010 21:17</td>
<td>xCO2_SW</td>
<td>417.0914263</td>
<td>3</td>
<td>CO2 data submitted was adjusted by + 2 ppm b/c span calibration was off as predicted by change in Licor temperature</td>
</tr>
</tbody>
</table>
2/19/2010 21:17 xCO2_Air 384.1429403 3 CO2 data submitted was adjusted by + 2 ppm b/c span calibration was off as predicted by change in Licor temperature

3/3/2010 3:17 xCO2_SW 413.4175 3 CO2 data submitted was adjusted by - 2 ppm b/c span calibration was off as predicted by change in Licor temperature

3/3/2010 3:17 xCO2_Air 385.2635695 3 CO2 data submitted was adjusted by - 2 ppm b/c span calibration was off as predicted by change in Licor temperature

3/13/2010 18:17 xCO2_SW 411.1005278 3 CO2 data submitted was adjusted by - 2 ppm b/c span calibration was off as predicted by change in Licor temperature

3/13/2010 18:17 xCO2_Air 384.6875549 3 CO2 data submitted was adjusted by - 2 ppm b/c span calibration was off as predicted by change in Licor temperature

4/22/2010 9:17 xCO2_SW 399.7997002 3 likely bad CO2 sw measurement due to pressure problems in equilibrator cycle

6/26/2010 3:17 xCO2SWG 423.6640234 4 bad CO2 sw measurement due to pressure problems in equilibrator cycle

6/28/2010 0:17 xCO2_SW 418.0618775 4 bad CO2 sw measurement due to pressure problems in equilibrator cycle