ERDDAP
Easier access to scientific data |
Brought to you by NOAA NMFS SWFSC ERD |
Dataset Title: | ISCCP H Gridded By Hour (HGH) cloud_type_label By cloud_type |
Institution: | International Cloud Climatology Project (ISCPP) (Dataset ID: iscpp_hgh_by_cloud_type) |
Information: | Summary | License | Metadata | Background |
Attributes { cloud_type { Int32 actual_range 0, 17; String units "count"; } cloud_type_label { Int32 _ChunkSizes 18, 80; String DODS_dimName "label_len"; Int32 DODS_strlen 80; String long_name "IR cloud type labels"; String units "1"; } NC_GLOBAL { String _CoordSysBuilder "ucar.nc2.dataset.conv.CF1Convention"; String acknowledgement "This project received funding support from NASA REASON PROGRAM, NASA MEASURES PROGRAM and NOAA CLIMATE DATA RECORD (CDR) PROGRAM"; String cdm_data_type "Grid"; String comment "---------- TO RE-MAP EQUAL-AREA MAP TO EQUAL-ANGLE (SQUARE LON,LAT) MAP ---------- For display purposes, the ISCCP equal-area map may be converted to an equal-angle map using replication. The variables 'eqlat_index', 'sqlon_beg' and 'sqlon_end'are provided for this purpose. Each equal-area cell is replicated into a specific range of longitude cells in the equal-angle map. For example, to remap an equal-area array eqvar[41252] to an equal-angle array sqmap[360,180], each eqvar[i] should be replicated into the range of cells indicated by sqlon_beg[i] and sqlon_end[i], and the lat index eqlat_index[i]. Using Fortran notation the assignment is: sqmap[sqlon_beg[i]:sqlon_end[i], eqlat_index[i]] = eqvar[i]. ---------- TO CONVERT COUNT UNITS TO PHYSICAL UNITS ---------- When attribute conversion_table is present for any variable, the reported values of count units may be converted to physical quantities by using the specified conversion table variable as a look-up table whose index is count value 0-255. For example, temperature = tmptab(count), temperature_variance = tmpvar(count), pressure = pretab(count), reflectance = rfltab(count), optical_depth = tautab(count), ozone = ozntab(count), humidity = humtab(count), water_path = wpatab(count). ---------- DEFINITION OF CLOUD TYPES ---------- VIS/IR cloud types are defined by a histogram of cloud top pressure and cloud optical depth, for both liquid and ice clouds. IR cloud types are defined by a histogram of cloud top pressure. Identification labels for the 18 VIS/IR cloud types and the 3 IR cloud types are given in the 'cloud_type_label' and 'cloud_irtype_label' variables, which correspond to the order of the cloud type variable arrays."; String contributor_name "William B. Rossow, Alison Walker, Violeta Golea, NOAA, EUMETSAT, ESA, JP/JMA, CHINA/CMA, BR/INPE, NASA"; String contributor_role "principalInvestigator, processor, resourceProvider, resourceProvider, resourceProvider, resourceProvider, resourceProvider, resourceProvider, resourceProvider"; String Conventions "CF-1.4, ACDD-1.3"; String creator_email "ncdc.isccp.team@noaa.gov"; String creator_institution "NOAA National Centers for Environmental Information (NCEI)"; String creator_name "NOAA National Centers for Environmental Information (NCEI); Ken Knapp, Bill Hankins, Alisa Young, Anand Inamdar"; String creator_type "institution"; String creator_url "http://www.ncei.noaa.gov"; String date_created "2019-07-19T06:48:07Z"; String date_issued "2019-07-19T06:48:07Z"; String date_metadata_modified "2019-07-19T06:48:07Z"; String date_modified "2019-07-19T06:48:07Z"; String geospatial_bounds "POLYGON((-90.0 0.0, -90.0 360.0, 90.0 360.0, 90.0 0.0, -90.0 0.0))"; String geospatial_bounds_crs "EPSG:4326"; String history "Fri Jul 19 06:48:07 2019: ncatted -a conversion_table,,d,, -a title,global,a,c, Basic -a description,snoice,m,c,Mean snow/ice cover for the cell -a source,global,o,c,The source for the ISCCP Basic data files are the original ISCCP files. ISCCP Basic represents a subset of variables from ISCCP that have been remapped to equal-angle, do not use table to store data, etc. in order to make the files CF compliant -a product_version,global,m,c,v01r00 Basic -a date_issued,global,m,c,2019-07-19T06:48:07Z -a date_created,global,m,c,2019-07-19T06:48:07Z -a date_modified,global,m,c,2019-07-19T06:48:07Z -a date_metadata_modified,global,m,c,2019-07-19T06:48:07Z -a long_name,cldbin_bounds,c,c,Boundaries of the cloud fractional amounts -a description,cldbin_bounds,c,c,The frequency of occurrence of this amount of cloud cover is provided in cldamt_dist -a units,cldbin_bounds,c,c,percent -a cell_methods,eqheight,c,c,area: mean -a cell_methods,snoice,c,c,area: mean -a cell_methods,cldamt,c,c,area: mean time: mean within days -a cell_methods,^pc,c,c,area: mean time: mean within days -a cell_methods,^tc,c,c,area: mean time: mean within days -a cell_methods,^tau,c,c,area: mean time: mean within days -a cell_methods,^wp,c,c,area: mean time: mean within days -a cell_methods,_time$,c,c,area: mean time: standard_deviation -a cell_methods,_space$,c,c,area: standard_deviation time: mean -a cell_methods,cldamt_ir,c,c,area: mean time: mean within days -a long_name,cldamt_irmarg,m,c,Cloud amount uncertainty (using IR data) -a cell_methods,cldamt_irmarg,c,c,area: mean time: mean within days -a note,cldamt_irmarg,c,c,This is the ISCCP variable: cldamt_irmarg. It represents the fraction of pixels that are colder than clear sky by a smaller amount than what is flagged in cldamt_ir and represents cloud amount uncertainty. -a cell_methods,cldamt_irtypes,c,c,area: mean time: mean within days -a cell_methods,cldamt_types,c,c,area: mean time: mean within days -a cell_methods,snoice,c,c,area: mean time: mean within days /glfs2/isccp-p/basic/intermediate//temp_file2.nc -O /glfs2/isccp-p/basic/intermediate//temp_file3.nc Fri Jul 19 06:48:06 2019: ncks --no-abc -4 -L 5 /glfs2/isccp-p/basic/intermediate//temp_file.nc -O /glfs2/isccp-p/basic/intermediate//temp_file2.nc 2019-05-14T19:54:07.000Z bhankins d2proda /glfs2/isccp-p/prd/wrkdirs/2017_06 2017 06 ; FMRC Best Dataset 2024-09-19T03:35:23Z https://www.ncei.noaa.gov/thredds/dodsC/cdr/isccp_hgh_agg/ISCCP-H_Aggregation_Basic_Gridded_By_Hour_(HGH)_best.ncd 2024-09-19T03:35:23Z https://www.ncei.noaa.gov/erddap/griddap/iscpp_hgh_by_cloud_type.das"; String id "ISCCP.HGH.0.GLOBAL.2017.06.99.1800.GPC.10KM.CS00.EQ1.00.nc"; String infoUrl "https://www.ncei.noaa.gov/thredds/catalog/cdr/isccp_hgh_agg/catalog.html?dataset=cdr/isccp_hgh_agg/ISCCP-H_Aggregation_Basic_Gridded_By_Hour_(HGH)_best.ncd"; String institution "International Cloud Climatology Project (ISCPP)"; String instrument "Himawari-8 AHI, SEVIRI, GOES-15 Imager, GOES-13 Imager, SEVIRI,, AVHRR-3"; String instrument_vocabulary "NASA Global Change Master Directory (GCMD) Instruments Keywords Version 8.1"; Int32 isccp_gmt 18; String isccp_input_files "ISCCP.HGG.0.GLOBAL.2017.06.01.1800.GPC.10KM.CS00.EQ1.00.nc ISCCP.HGG.0.GLOBAL.2017.06.02.1800.GPC.10KM.CS00.EQ1.00.nc ISCCP.HGG.0.GLOBAL.2017.06.03.1800.GPC.10KM.CS00.EQ1.00.nc ISCCP.HGG.0.GLOBAL.2017.06.04.1800.GPC.10KM.CS00.EQ1.00.nc ISCCP.HGG.0.GLOBAL.2017.06.05.1800.GPC.10KM.CS00.EQ1.00.nc ISCCP.HGG.0.GLOBAL.2017.06.06.1800.GPC.10KM.CS00.EQ1.00.nc ISCCP.HGG.0.GLOBAL.2017.06.07.1800.GPC.10KM.CS00.EQ1.00.nc ISCCP.HGG.0.GLOBAL.2017.06.08.1800.GPC.10KM.CS00.EQ1.00.nc ISCCP.HGG.0.GLOBAL.2017.06.09.1800.GPC.10KM.CS00.EQ1.00.nc ISCCP.HGG.0.GLOBAL.2017.06.10.1800.GPC.10KM.CS00.EQ1.00.nc ISCCP.HGG.0.GLOBAL.2017.06.11.1800.GPC.10KM.CS00.EQ1.00.nc ISCCP.HGG.0.GLOBAL.2017.06.12.1800.GPC.10KM.CS00.EQ1.00.nc ISCCP.HGG.0.GLOBAL.2017.06.13.1800.GPC.10KM.CS00.EQ1.00.nc ISCCP.HGG.0.GLOBAL.2017.06.14.1800.GPC.10KM.CS00.EQ1.00.nc ISCCP.HGG.0.GLOBAL.2017.06.15.1800.GPC.10KM.CS00.EQ1.00.nc ISCCP.HGG.0.GLOBAL.2017.06.16.1800.GPC.10KM.CS00.EQ1.00.nc ISCCP.HGG.0.GLOBAL.2017.06.17.1800.GPC.10KM.CS00.EQ1.00.nc ISCCP.HGG.0.GLOBAL.2017.06.18.1800.GPC.10KM.CS00.EQ1.00.nc ISCCP.HGG.0.GLOBAL.2017.06.19.1800.GPC.10KM.CS00.EQ1.00.nc ISCCP.HGG.0.GLOBAL.2017.06.20.1800.GPC.10KM.CS00.EQ1.00.nc ISCCP.HGG.0.GLOBAL.2017.06.21.1800.GPC.10KM.CS00.EQ1.00.nc ISCCP.HGG.0.GLOBAL.2017.06.22.1800.GPC.10KM.CS00.EQ1.00.nc ISCCP.HGG.0.GLOBAL.2017.06.23.1800.GPC.10KM.CS00.EQ1.00.nc ISCCP.HGG.0.GLOBAL.2017.06.24.1800.GPC.10KM.CS00.EQ1.00.nc ISCCP.HGG.0.GLOBAL.2017.06.25.1800.GPC.10KM.CS00.EQ1.00.nc ISCCP.HGG.0.GLOBAL.2017.06.26.1800.GPC.10KM.CS00.EQ1.00.nc ISCCP.HGG.0.GLOBAL.2017.06.27.1800.GPC.10KM.CS00.EQ1.00.nc ISCCP.HGG.0.GLOBAL.2017.06.28.1800.GPC.10KM.CS00.EQ1.00.nc ISCCP.HGG.0.GLOBAL.2017.06.29.1800.GPC.10KM.CS00.EQ1.00.nc ISCCP.HGG.0.GLOBAL.2017.06.30.1800.GPC.10KM.CS00.EQ1.00.nc"; Int32 isccp_month 6; Int32 isccp_number_of_satellites_contributing 7; Int32 isccp_percent_empty_cells 0; Int32 isccp_percent_full_cells 100; Int32 isccp_year 17; String keywords "Earth Science > Atmosphere > Atmospheric Chemistry > Oxygen Compounds > Ozone, Earth Science > Atmosphere > Atmospheric Pressure > Surface Pressure, Earth Science > Atmosphere > Atmospheric Temperature, Earth Science > Atmosphere > Atmospheric Temperature > Surface Temperature > Air Temperature, Earth Science > Atmosphere > Atmospheric Temperature > Surface Temperature > Skin Temperature, Earth Science > Atmosphere > Atmospheric Temperature > Upper Air Temperature > Vertical Profiles, Earth Science > Atmosphere > Atmospheric Water Vapor, Earth Science > Atmosphere > Atmospheric Water Vapor > Humidity, Earth Science > Atmosphere > Atmospheric Water Vapor > Water Vapor Profiles, Earth Science > Atmosphere > Clouds, Earth Science > Atmosphere > Clouds > Cloud Microphysics > Cloud Liquid Water/Ice, Earth Science > Atmosphere > Clouds > Cloud Microphysics > Cloud Optical Depth/Thickness, Earth Science > Atmosphere > Clouds > Cloud Properties, Earth Science > Atmosphere > Clouds > Cloud Properties > Cloud Fraction, Earth Science > Atmosphere > Clouds > Cloud Properties > Cloud Frequency, Earth Science > Atmosphere > Clouds > Cloud Properties > Cloud Top Pressure, Earth Science > Atmosphere > Clouds > Cloud Properties > Cloud Top Temperature, Earth Science > Atmosphere > Clouds > Cloud Properties > Cloud Vertical Distribution, Earth Science > Atmosphere > Clouds > Cloud Types, Earth Science > Cryosphere > Snow/Ice, Earth Science > Land Surface > Surface Radiative Properties, Earth Science > Land Surface > Surface Radiative Properties > Reflectance, Earth Science > Land Surface > Surface Thermal Properties, Earth Science > Land Surface > Surface Thermal Properties > Skin Temperature, Earth Science > Land Surface > Topography > Terrain Elevation, Earth Science > Oceans > Ocean Temperature > Sea Surface Temperature"; String keywords_vocabulary "NASA Global Change Master Directory (GCMD) Science Keyword Version 8.1"; String license "The data may be used and redistributed for free but is not intended for legal use, since it may contain inaccuracies. Neither the data Contributor, ERD, NOAA, nor the United States Government, nor any of their employees or contractors, makes any warranty, express or implied, including warranties of merchantability and fitness for a particular purpose, or assumes any legal liability for the accuracy, completeness, or usefulness, of this information."; String location "Proto fmrc:ISCCP-H_Aggregation_Basic_Gridded_By_Hour_(HGH)"; String metadata_link "gov.noaa.ncdc.C00956"; String naming_authority "gov.noaa.ncdc"; String NCO "netCDF Operators version 4.7.5 (Homepage = http://nco.sf.net, Code = https://github.com/nco/nco)"; String platform "HIM-8, METEOSAT-10, GOES-15, GOES-13, METEOSAT-8, NOAA-19, METOP-A"; String platform_vocabulary "NASA Global Change Master Directory (GCMD) Platforms Keyword Version 8.1"; String processing_level "3"; String product_version "v01r00 Basic"; String program "NOAA Climate Data Record Program for satellites, FY 2016"; String project "International Satellite Cloud Climatology Project (ISCCP)"; String publisher_email "ncdc.isccp.team@noaa.gov"; String publisher_institution "NOAA National Centers for Environmental Information (NCEI)"; String publisher_name "NOAA National Centers for Environmental Information (NCEI)"; String publisher_type "institution"; String publisher_url "http://www.ncei.noaa.gov"; String references "'Please include a citation for this paper in addition to the dataset citation when using the dataset: Rossow, W.B. and R.A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bulletin of the American Meteorological Society, 80, 2261-2287. doi: https://dx.doi.org/10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2','ISCCP CDR Climate Algorithm Theoretical Basis Document (C-ATBD)'"; String source "The source for the ISCCP Basic data files are the original ISCCP files. ISCCP Basic represents a subset of variables from ISCCP that have been remapped to equal-angle, do not use table to store data, etc. in order to make the files CF compliant"; String sourceUrl "https://www.ncei.noaa.gov/thredds/dodsC/cdr/isccp_hgh_agg/ISCCP-H_Aggregation_Basic_Gridded_By_Hour_(HGH)_best.ncd"; String summary "ISCCP H Gridded By Hour (HGH) cloud_type_label Dimensioned By cloud_type."; String time_coverage_duration "P1M"; String time_coverage_resolution "PT3H"; String title "ISCCP H Gridded By Hour (HGH) cloud_type_label By cloud_type"; } }
The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.
griddap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/griddap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/griddap/erdBAssta5day.htmlTable?sst[(2007-10-21T00:00:00)][0][(-75):100:(75)][(180):100:(360)]
Thus, the query is often a data variable name (e.g., sst),
followed by [(start):stride:(stop)]
(or a shorter variation of that) for each of the variable's dimensions
(for example, [time][altitude][latitude][longitude]).
For details, see the griddap Documentation.