

STATE OF THE
CLIMATE IN
2008

HOW TO CITE THIS DOCUMENT

Citing the complete report:

Peterson, T. C., and M. O. Banger, Eds., 2009: State of the Climate in 2008. *Bull. Amer. Meteor. Soc.*, **90**, SI–SI96.

Citing a chapter (example):

Levy, J. M., Ed., 2009: Global oceans [in “State of the Climate in 2008”]. *Bull. Amer. Meteor. Soc.*, **90** (8), SI–SI96.

Citing a section (example):

L'Heureux, M., G. Bell, and M. Halpert, 2009: ENSO and the tropical Pacific [in “State of the Climate in 2008”]. *Bull. Amer. Meteor. Soc.*, **90** (8), SI–SI96.

AFFILIATIONS (ALPHABETICAL BY AUTHOR)

Aceituno, Patricio, Universidad de Chile, Santiago, Chile

Achard, Frédéric, Institute for Environment and Sustainability, Joint Research Centre, Ispra, Italy

Acheberger, Christine, Earth Sciences Centre, University of Gothenburg, Gothenburg, Sweden

Ackerman, Steven A., CIMSS University of Wisconsin—Madison, Madison, Wisconsin

Alfaro, Eric J., Center for Geophysical Research, University of Costa Rica, San José, Costa Rica

Allan, Rob, Met Office Hadley Centre, Exeter, Devon, United Kingdom

Amador, Jorge A., Center for Geophysical Research, University of Costa Rica, San José, Costa Rica

Antonov, John I., NOAA/NESDIS National Ocean Data Center, Silver Spring, Maryland

Ashik, I., Arctic and Antarctic Research Institute, St. Petersburg, Russia

Attaher, Samar M., Ministry of Agriculture and Land Reclamation, Cairo, Egypt

Baez, Julian, DMH-DINAC/CTA-UCA, Asunción, Paraguay

Bai, L.-S., Byrd Polar Research Center and Department of Geography, The Ohio State University, Columbus, Ohio

Ballard, Robert A., NOAA/NWS, Honolulu, Hawaii

Baringer, Molly O., NOAA/Atlantic Oceanographic and Meteorological Laboratory, Physical Oceanography Division, Miami, Florida

Barreira, Sandra, Argentine Naval Hydrographic Service, Buenos Aires, Argentina

Barriopedro, David, Centro de Geofísica da Universidade de Lisboa, Lisbon, Portugal

Bartholomé, Etienne, Institute for Environment and Sustainability, Joint Research Centre, Ispra, Italy

Beal, Lisa M., Rosenstiel School of Marine and Atmospheric Science, Division of Meteorology and Physical Oceanography, Miami, Florida

Behrenfeld, Michael J., Oregon State University, Corvallis, Oregon

Bell, Gerald D., NOAA/NWS/NCEP Climate Prediction Center, Camp Springs, Maryland

Bell, Michael A., International Institute for Climate and Society, New York

Bellouin, Nicolas, Met Office Hadley Centre, Exeter, Devon, United Kingdom

Belward, Alan S., Institute for Environment and Sustainability, Joint Research Centre, Ispra, Italy

Bennartz, Ralf, Department of Atmospheric and Oceanic Sciences, University of Wisconsin—Madison, Madison, Wisconsin

Benson, R., Byrd Polar Research Center and Department of Geography, The Ohio State University, Columbus, Ohio

Bhatt, U. S., Geophysical Institute, University of Alaska—Fairbanks, Fairbanks, Alaska

Bhattacharya, I., Byrd Polar Research Center and Department of Geography, The Ohio State University, Columbus, Ohio

Bidegain, Mario, Instituto de Fisica, Montevideo, Uruguay

Bissolli, Peter, German Meteorological Service, Offenbach, Germany

Blake, Eric, NOAA/NWS/NCEP National Hurricane Center, Miami, Florida

Boudet, Dagne, Institute of Meteorology of Cuba, La Habana, Cuba

Bowling, Laura C., Department of Agronomy, Purdue University, West Lafayette, Indiana

Box, J. E., Byrd Polar Research Center and Department of Geography, The Ohio State University, Columbus, Ohio

Boyer, Timothy P., NOAA/NESDIS National Ocean Data Center, Silver Spring, Maryland

Brink, Andreas B., Institute for Environment and Sustainability, Joint Research Centre, Ispra, Italy

Bromwich, David H., Byrd Polar Research Center and Department of Geography, The Ohio State University, Columbus, Ohio

Brown, R., Climate Research Division, Environment Canada, Downsview, Ontario, Canada

Bryden, Harry L., Ocean Observing and Climate Research Group, National Oceanography Centre, Southampton, United Kingdom

Bulygina, Olga N., All-Russian Research Institute of Hydrological Information, Obninsk, Russia

Calderon, Blanca, Center for Geophysical Research, University of Costa Rica, San José, Costa Rica

Camargo, Suzana J., Lamont–Doherty Earth Observatory, The Earth Institute at Columbia University, Palisades, New York

Cappelen, J., Danish Meteorological Institute, Copenhagen, Denmark

Carmack, E., Institute of Ocean Sciences, Sidney, British Columbia, Canada

Chen, Deliang, Earth Sciences Centre, University of Gothenburg, Gothenburg, Sweden

Christy, John R., Earth System Science Center, University of Alabama in Huntsville, Huntsville, Alabama

Coelho, Caio A. S., CPTEC/INPE, Center for Weather Forecasts and Climate Studies, Cachoeira Paulista, Brazil

Colwell, Steve, British Antarctic Survey, Cambridge, United Kingdom

Comiso, J. E., NASA Goddard Space Flight Center, Greenbelt, Maryland

Cunningham, Stuart. A., Ocean Observing and Climate Research Group, National Oceanography Centre, Southampton, United Kingdom

Cupo, J. P., National Weather Service, San Juan, Puerto Rico

Cutié, Virgen, Institute of Meteorology of Cuba, La Habana, Cuba

Davydova-Belitskaya, Valentina, National Meteorological Service of Mexico, Mexico City, Mexico

Decker, D., Byrd Polar Research Center and Department of Geography, The Ohio State University, Columbus, Ohio

Derkzen, C., Climate Research Division, Environment Canada, Downsview, Ontario, Canada

Diamond, Howard J., NOAA/NESDIS National Climatic Data Center, Silver Spring, Maryland

Dickson, Andrew G., Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

DiGirolamo, N., Science Systems Applications Inc. and NASA Goddard Space Flight Center, Greenbelt, Maryland

Slugokenky, Ed, NOAA Global Monitoring Division, Earth System Research Laboratory, Boulder, Colorado

Dohan, Kathleen, Earth and Space Research, Seattle, Washington

Drozdov, D., Earth Cryosphere Institute, Tumen, Russia

Dutton, Geoffrey S., NOAA Earth Science Research Laboratory/ Cooperative Institute for Research in Environmental Sciences (CIRES), Boulder, Colorado

Elkins, James W., NOAA Earth System Research Laboratory, Boulder, Colorado

Epstein, H. E., University of Virginia, Charlottesville, Virginia

Feely, Richard A., NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, Washington

Fekete, Balázs M., NOAA CREST Center, The City College of New York, New York, New York

Fenimore, Chris, NOAA/NESDIS/National Climatic Data Center, Asheville, North Carolina

Fettweis, X., Department of Geography, University of Liège, Liège, Belgium

Fogt, Ryan L., NOAA Earth System Research Laboratory, Boulder, Colorado

Folland, Chris K., Met Office Hadley Centre, Exeter, Devon, United Kingdom

Fonseca-Rivera, Cecilia, Institute of Meteorology of Cuba, La Habana, Cuba

Foster, Michael J., AOS/CIMSS University of Wisconsin—Madison, Madison, Wisconsin

Frolov, I., Arctic and Antarctic Research Institute, St. Petersburg, Russia

Gamedze, Mduduzi S., Swaziland Meteorological Service, Mbabane, Swaziland

Gill, Stephen, NOAA/NOS Center for Operational Oceanographic Products and Services, Silver Spring, Maryland

Gleason, Karin L., NOAA/NESDIS National Climatic Data Center, Asheville, North Carolina

Gobron, Nadine, Institute for Environment and Sustainability, Joint Research Centre, Ispra, Italy

Goldenberg, Stanley B., NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Goni, Gustavo J., NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, Physical Oceanography Division, Miami, Florida

González, Idelmis, Institute of Meteorology of Cuba, La Habana, Cuba

Gottschalck, Jonathan, NOAA/NWS/NCEP Climate Prediction Center, Camp Springs, Maryland

Gouveia, Célia C., Centro de Geofísica da Universidade de Lisboa, Lisbon, Portugal

Guard, Charles P., NOAA National Weather Service, Barrigada, Guam

Guo, Yanjun, National Climate Center, Beijing, China

Haimberger, Leopold, University of Vienna, Vienna, Austria

Hall, D., NASA Goddard Space Flight Center, Greenbelt, Maryland

Halpert, Michael S., NOAA/NWS/NCEP Climate Prediction Center, Camp Springs, Maryland

Hanna, E., Department of Geography, University of Sheffield, England

Harris, Glen, Met Office Hadley Centre, Exeter, Devon, United Kingdom

Haywood, Jim, Met Office Hadley Centre, Exeter, Devon, United Kingdom

Heidinger, Andrew K., NOAA/NESDIS University of Wisconsin—Madison, Madison, Wisconsin

Heim, Richard R., Jr., NOAA/NESDIS/ National Climatic Data Center, Asheville, North Carolina

Hernandez, Marieta, Institute of Meteorology of Cuba, La Habana, Cuba

Hilburn, Kyle A., Remote Sensing Systems, Santa Rosa, California

Hirschi, Joel, Ocean Observing and Climate Research Group, National Oceanography Centre, Southampton, United Kingdom

Jaimes, Ena, Servicio Nacional de Meteorología e Hidrología de Perú, Lima, Perú

Jia, G. J., Chinese Academy of Sciences, Institute for Atmospheric Physics, Beijing, China

Johns, William E., Rosenstiel School of Marine and Atmospheric Science, Division of Meteorology and Physical Oceanography, Miami, Florida

Johnson, Gregory C., NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, Washington

Jones, Andy, Met Office Hadley Centre, Exeter, Devon, United Kingdom

Jones, Gareth S., Met Office Hadley Centre, Exeter, Devon, United Kingdom

Kabidi, Khadija, Direction de la Météorologie Nationale, Rabat, Morocco

Kanzow, Torsten O., Ocean Observing and Climate Research Group, National Oceanography Centre, Southampton, United Kingdom

Kennedy, John J., Met Office Hadley Centre, Exeter, Devon, United Kingdom

Khalil, Alaa A., Ministry of Agriculture and Land Reclamation, Cairo, Egypt

Khodolov, A., Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska

Khoshkam, Mahbobe, Islamic Republic of Iran Meteorological Organization, Tehran, Iran

Kimberlain, Todd, NOAA/NWS/NCEP National Hurricane Center, Miami, Florida

Knaff, John A., NOAA/NWS Regional and Mesoscale Meteorology Branch, Fort Collins, Colorado

Knight, Jeff, Met Office Hadley Centre, Exeter, Devon, United Kingdom

Korshunova, Natalia N., All-Russian Research Institute of Hydrological Information, Obninsk, Russia

Kratz, David P., NASA Langley Research Center, Hampton, Virginia

Krishfield, R., Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Kruger, Andries, South African Weather Service, Pretoria, South Africa

Kruk, Michael C., STG, Inc., Asheville, North Carolina

L'Heureux, Michelle, NOAA/NWS/NCEP Climate Prediction Center, Camp Springs, Maryland

Lammers, Richard B., WSAG/CSRC Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire

Lander, Mark A., Water and Environmental Research Institute, University of Guam, Mangilao, Guam

Landsea, Chris W., NOAA/NWS/NCEP National Hurricane Center, Miami, Florida

Lapinel, Braulio, Institute of Meteorology of Cuba, La Habana, Cuba

Lawford, Richard, Hydrological and Biospheric Sciences, NASA GSFC, Greenbelt, Maryland

Lee, Hyun-Soo, Climate Prediction Division, Korea Meteorological Administration, Seoul, Republic of Korea

León, Gloria, Instituto de Hidrología de Meteorología y Estudios Ambientales, Columbia

Leuliette, Eric, NOAA/NESDIS, Laboratory for Satellite Altimetry, Silver Spring, Maryland

Levinson, David H., NOAA/NESDIS National Climatic Data Center, Asheville, North Carolina

Levitus, Sydney, NOAA/NESDIS National Ocean Data Center, Silver Spring, Maryland

Levy, Joel M., NOAA/OAR Climate Program Office, Silver Spring, Maryland

Liu, Hongxing, Department of Geography, Texas A&M University, College Station, Texas

Long, Di, Department of Geography, Texas A&M University, College Station, Texas

Longworth, Hannah R., Ocean Observing and Climate Research Group, National Oceanography Centre, Southampton, United Kingdom

Lumpkin, Rick, NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, Physical Oceanography Division, Miami, Florida

Luo, Jing-Jia, Frontier Research Center for Global Change, JAMSTEC, Yokohama, Japan

Lyman, John M., NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, Washington, and Joint Institute for Marine and Atmospheric Research, University of Hawaii, Honolulu, Hawaii

Macdonald, Alison M., Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Maddux, Brent C., AOS/CIMSS University of Wisconsin—Madison, Madison, Wisconsin

Malkova, G., Earth Cryosphere Institute, Tumen, Russia

Marchenko, S., Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska

Marengo, Jose A., Centro de Ciências do Sistema Terrestre (CCST), Instituto Nacional de Pesquisas Espaciais (INPE), Cachoeira Paulista, São Paulo, Brazil

Maritorena, Stephane, University of California at Santa Barbara, Santa Barbara, California

Marotzke, Jochum, Max-Planck-Institut für Meteorologie, Hamburg, Germany

Martinez, Rodney, Centro Internacional para la Investigación del Fenómeno de El Niño (CIIFEN), Guayaquil, Ecuador

Mascarenhas, Affonso, Centro Internacional para la Investigación del Fenómeno de El Niño (CIIFEN), Guayaquil, Ecuador

Massom, Robert A., Australian Antarctic Division and Antarctic Climate and Ecosystems Cooperative Research Center (ACE CRC), University of Tasmania, Hobart, Tasmania, Australia

McBride, Charlotte, Climate Service, South African Weather Service, Pretoria, South Africa

McGree, Simon, Fiji Meteorological Service, Nadi, Fiji

McLaughlin, F., Institute of Ocean Sciences, Sidney, British Columbia, Canada

McPhee, M., McPhee Research Company, Naches, Washington

Mears, Carl A., Remote Sensing Systems, Santa Rosa, California

Medany, Mahmoud A., Ministry of Agriculture and Land Reclamation, Cairo, Egypt

Meier, W., CIRES/NSIDC, University of Colorado, Boulder, Colorado

Meinen, Christopher S., NOAA/Atlantic Oceanographic and Meteorological Laboratory, Physical Oceanography Division, Miami, Florida

Menne, Matthew J., NOAA/NESDIS National Climatic Data Center, Asheville, North Carolina

Merrifield, Mark A., University of Hawaii at Manoa, Honolulu, Hawaii

Mhanda, Albert S., Climate Change Office, Harare, Zimbabwe

Miller, Laury, NOAA/NESDIS, Laboratory for Satellite Altimetry, Silver Spring, Maryland

Mitchum, Gary T., College of Marine Science, University of South Florida, St. Petersburg, Florida

Monaghan, Andrew J., National Center for Atmospheric Research, Boulder, Colorado

Montzka, Steve, NOAA Global Monitoring Division, Earth System Research Laboratory, Boulder, Colorado

Morison, J., Polar Science Center, University of Washington, Seattle, Washington

Mote, T., Department of Geography, University of Georgia, Atlanta, Georgia

Mullan, A. Brett, National Institute of Water and Atmospheric Research, Ltd., Wellington, New Zealand

Mutasa, Colin, Meteorological Service Department, Harare, Zimbabwe

Nerem, R. Steven, University of Colorado, Boulder, Colorado

Newman, Paul A., Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland

Nghiem, S. V., Jet Propulsion Laboratory, Pasadena, California

Njau, Leonard, African Centre of Meteorological Applications for Development, Niamey, Niger

O'Malley, Robert T., Oregon State University, Corvallis, Oregon

Oberman, N., MIREKO, Syktivkar, Russia

Obregón, André, Laboratory for Climatology and Remote Sensing (LCRS), University of Marburg, Marburg, Germany

Ogallo, Laban, IGAD Climate Prediction and Applications Centre, Nairobi, Kenya

Oludhe, Christopher, Department of Meteorology, University of Nairobi, Nairobi, Kenya

Osman-Elasha, Balgis, Higher Council for Environmental and Natural Resources, Khartoum, Sudan

Overland, J., NOAA, Pacific Marine Environmental Laboratory, Seattle, Washington

Pabón, Daniel, Universidad Nacional de Colombia, Bogotá, Columbia

Palmer, Matthew, Met Office Hadley Centre, Exeter, Devon, United Kingdom

Parker, David E., Met Office Hadley Centre, Exeter, Devon, United Kingdom

Pasch, Richard, NOAA/NWS/NCEP National Hurricane Center, Miami, Florida

Pelto, Mauri S., Nichols College, Dudley, Massachusetts

Pérez-Suarez, Ramón, Institute of Meteorology of Cuba, La Habana, Cuba

Perovich, D.K., ERDC-Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire

Peterson, Thomas C., NOAA/NESDIS National Climatic Data Center, Asheville, North Carolina

Pezza, Alexandre B., The University of Melbourne, Melbourne, Victoria, Australia

Phillips, David, Environment Canada, Toronto, Ontario, Canada

Polyakov, I., International Arctic Research Center, Fairbanks, Alaska

Proshutinsky, A., Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Quintana, Juan, National Weather Service, Santiago, Chile

Quintero, Alexander, Servicio de Meteorología de l'Aviación, Maracay, Aragua, Venezuela

Rahimzadeh, Fatemeh, Atmospheric Science and Meteorological Research Center, Tehran, Iran

Rajeevan, Madhavan, National Climate Centre, India Meteorological Department, Pune, India

Rayner, Darren, Ocean Observing and Climate Research Group, National Oceanography Centre, Southampton, United Kingdom

Raynolds, M. K., Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska

Razuvaev, Vyacheslav N., All-Russian Research Institute of Hydrological Information, Obninsk, Russia

Reid, Phillip, Australian Bureau of Meteorology and ACE CRC, University of Tasmania, Hobart, Tasmania, Australia

Revadekar, Jayashree, Indian Institute of Tropical Meteorology, Pune, India

Reynolds, Richard W., NOAA/NESDIS National Climatic Data Center, Asheville, North Carolina

Richter-Menge, J., ERDC-Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire

Rivera, Erick R., Center for Geophysical Research, University of Costa Rica, San José, Costa Rica

Robinson, David A., Rutgers University, Piscataway, New Jersey

Rogers, Mark, Joint Operational Meteorology and Oceanography Centre, Met Office, Exeter, Devon, United Kingdom

Romanovsky, V., Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska

Romero-Cruz, Fernando, National Meteorological Service of Mexico, Mexico City, Mexico

Ronchail, Josyane, Université de Paris, Paris, France

Rossi, S., National Weather Service, San Juan, Puerto Rico

Rossow, William B., NOAA Cooperative Remote Sensing Science and Technology Center, City College of New York, New York, New York

Rusticucci, Matilde, Universidad de Buenos Aires, Buenos Aires, Argentina

Sabine, Christopher L., NOAA/OAR Pacific Marine Environmental Laboratory, Seattle, Washington

Sakai, Yoshitoshi, Climate Prediction Division, Japan Meteorological Agency, Tokyo, Japan

Salinger, M. James, The University of Auckland, Auckland, New Zealand

Sayouri, Amal, Direction de la Météorologie Nationale, Rabat, Morocco

Scaife, Adam A., Met Office Hadley Centre, Exeter, Devon, United Kingdom

Scambos, Ted A., National Snow and Ice Data Center, University of Colorado, Boulder, Colorado

Schemm, Jae, NOAA/NWS/NCEP Climate Prediction Center, Camp Springs, Maryland

Schmid, Claudia, NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, Physical Oceanography Division, Miami, Florida

Schnell, Russ C., NOAA Global Monitoring Division, Earth System Research Laboratory, Boulder, Colorado

Sebbari, Rachid, Direction de la Météorologie Nationale, Rabat, Morocco

Seidel, Dian J., NOAA Air Resources Laboratory, Silver Spring, Maryland

Sensoy, Serhat, Turkish State Meteorological Service, Ankara, Turkey

Sharp, M., University of Alberta, Department of Earth and Atmospheric Sciences, Edmonton, Alberta, Canada

Shiklomanov, A., University of New Hampshire, Durham, New Hampshire

Shimada, K., Institute of Observational Research for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan

Shulski, Martha, Alaska Climate Research Center, Fairbanks, Alaska

Siegel, David A., University of California at Santa Barbara, Santa Barbara, California

Skansi, Maria, National Weather Service, Buenos Aires, Argentina

Sokolov, V., Arctic and Antarctic Research Institute, St. Petersburg, Russia

Spence, Jacqueline M., University of the West Indies, Mona, Jamaica

Stackhouse, Paul W., Jr., NASA Langley Research Center, Hampton, Virginia

Stammerjohn, Sharon, University of California, Santa Cruz, Santa Cruz, California

Steele, M., Polar Science Center, University of Washington, Seattle, Washington

Stephens, Scott E., NOAA/NESDIS/National Climatic Data Center, Asheville, North Carolina

Stephenson, Tannecia S., University of the West Indies, Mona, Jamaica

Stott, Peter A., Met Office Hadley Centre, Exeter, Devon, United Kingdom

Takahashi, Taro, Lamont–Doherty Earth Observatory, Columbia University, Palisades, New York

Taylor, Michael A., University of the West Indies, Mona, Jamaica

Tedesco, M., Department of Earth and Atmospheric Sciences, City College of New York, New York, New York

Thiaw, Wassila M., NOAA/NWS/NCEP Climate Prediction Center, Camp Springs, Maryland

Thorne, Peter W., Met Office Hadley Centre, Exeter, Devon, United Kingdom

Timmermans, M.-L., Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Toole, J., Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Trewin, Blair C., National Climate Centre, Australian Bureau of Meteorology, Melbourne, Victoria, Australia

Trigo, Ricardo M., Centro de Geofísica da Universidade de Lisboa, Lisbon, Portugal

Turner, John, British Antarctic Survey, Cambridge, United Kingdom

van de Wal, R., Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, The Netherlands

van den Broeke, M., Institute for Marine and Atmospheric Research Utrecht, Utrecht University, Utrecht, The Netherlands

Vincent, Lucie, Environment Canada, Toronto, Ontario, Canada

Walker, D. A., Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska

Walsh, J., International Arctic Research Center, Fairbanks, Alaska

Walther, Alexander, Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden

Wang, Junhong, Earth Observation Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Wang, L., Climate Research Division, Environment Canada, Downsview, Ontario, Canada

Wang, Lei, Department of Geography and Anthropology, Louisiana State University, Baton Rouge, Louisiana

Wang, M., JISAO, University of Washington, Seattle, Washington

Wang, Sheng-Hung, Byrd Polar Research Center, The Ohio State University, Columbus, Ohio

Wang, Xiaoling, National Climate Center, China Meteorological Administration, Beijing, China

Wanninkhof, Rik, NOAA/OAR Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry Division, Miami, Florida

Ward, Bill, NOAA/NWS/Pacific Region Headquarters, Honolulu, Hawaii

Watkins, Andrew B., National Climate Centre, Australian Bureau of Meteorology, Melbourne, Victoria, Australia

Weber, Mark, University of Bremen, Bremen, Germany

Weingartner, T., Institute of Marine Science, University of Alaska Fairbanks, Fairbanks, Alaska

Weller, Robert A., Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Weyman, James, NOAA/NWS/Central Pacific Hurricane Center, Honolulu, Hawaii

Whitewood, Robert, Environment Canada, Toronto, Ontario, Canada

Wilber, Anne C., Science Systems Applications, Inc., Hampton, Virginia

Willis, Joshua K., NASA/Jet Propulsion Laboratory, Pasadena, California

Wolken, G., Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada

Wong, Takmeng, NASA Langley Research Center, Hampton, Virginia

Woodgate, R., Woods Hole Oceanographic Institution, Woods Hole, Washington

Woodworth, Philip L., Proudman Oceanographic Laboratory, Liverpool, United Kingdom

Xue, Yan, NOAA/NWS, Climate Prediction Center, National Centers for Environmental Prediction, Camp Springs, Maryland

Yu, Lisan, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Zhakata, Washington, Ministry of Environment and Tourism, Harare, Zimbabwe

Zhang, Liangying, Earth Observation Laboratory, National Center for Atmospheric Research, Boulder, Colorado

Zhao, Sansan, National Climate Center, China Meteorological Administration, Beijing, China

TABLE OF CONTENTS

List of authors and affiliations.....	3
Abstract	12
I. INTRODUCTION.....	13
2. GLOBAL CLIMATE.....	17
a. Summary.....	17
b. Temperatures.....	17
1. Global surface temperatures in 2008.....	17
2. Lower tropospheric temperatures.....	19
3. Stratospheric temperatures	20
c. Hydrologic cycle.....	24
1. Total column water vapor	24
2. Global precipitation.....	24
3. Northern Hemisphere continental snow cover extent.....	28
4. Global cloudiness	29
5. River discharge.....	30
d. Atmospheric circulation.....	31
1. Mean sea level pressure.....	31
2. Surface wind speed.....	32
e. Earth radiation budget at top-of-atmosphere.....	33
f. Atmospheric composition	34
1. Atmospheric chemical composition.....	34
2. Global aerosols.....	39
3. Stratospheric ozone	40
g. Land surface properties	42
1. Alpine glaciers and ice sheets	42
2. Land cover.....	43
3. Global vegetation condition	44
3. GLOBAL OCEANS.....	47
a. Overview.....	47
b. Sea surface temperatures in 2008.....	47
c. Ocean heat content.....	49
d. Global ocean heat fluxes.....	52
e. Tropical cyclone heat potential	54
f. Sea surface salinity.....	56
g. Surface current observations	57
1. Surface current anomalies in 2008.....	58
2. Long-term changes in surface currents.....	59
h. The meridional overturning circulation	59
i. Sea level variations, 2008 annual assessment.....	62
j. The global ocean carbon cycle	65
1. Air-sea carbon dioxide fluxes	65
2. Subsurface carbon inventory	66
k. Global ocean phytoplankton.....	68

4. TROPICS.....	75
a. Overview.....	75
b. ENSO and the tropical Pacific.....	75
1. Oceanic conditions	75
2. Atmospheric circulation.....	76
3. La Niña impacts	77
c. The Madden–Julian Oscillation.....	78
d. Tropical cyclones.....	79
1. Overview.....	79
2. Atlantic basin.....	79
3. Eastern North Pacific basin.....	83
4. Western North Pacific basin.....	85
5. Indian Ocean basins.....	88
6. Southwest Pacific basin.....	89
7. Australian basin.....	90
e. Intertropical Convergence Zones.....	90
1. Pacific.....	90
2. Atlantic.....	92
f. Indian Ocean dipole.....	92
5. THE ARCTIC.....	97
a. Overview.....	97
b. Atmosphere.....	97
c. Ocean.....	99
d. Sea-ice cover	102
e. Land	104
1. Vegetation	104
2. Permafrost.....	105
3. River discharge.....	106
4. Terrestrial snow	106
5. Glaciers outside Greenland.....	107
f. Greenland	108
1. Summary.....	108
2. Regional surface temperatures.....	108
3. Upper-air temperatures	109
4. Surface melt extent and duration	110
5. Precipitation anomalies.....	110
6. Surface albedo.....	111
7. Surface mass balance.....	111
8. Floating glacier ice changes.....	111
6. ANTARCTICA.....	113
a. Overview.....	113
b. Atmospheric circulation.....	114
c. Surface station observations.....	115
d. Surface mass balance.....	117
e. Seasonal melt extent and duration.....	117
f. Sea-ice extent and concentration.....	118
g. Ozone depletion	120

7. REGIONAL CLIMATES	123
a. Overview.....	123
b. North America.....	123
1. Canada	123
2. United States.....	124
3. Mexico.....	128
c. Central America and Caribbean.....	130
1. Central America.....	130
2. Cuba.....	130
3. Jamaica.....	131
4. Puerto Rico and the U.S. Virgin Islands	132
d. South America.....	133
1. Northern South America and the tropical Andes	133
2. Tropical South America east of the Andes	134
3. Southern South America.....	136
e. Africa.....	138
1. Northern Africa	138
2. Western Africa	139
3. Eastern Africa.....	140
4. Southern Africa.....	142
f. Europe.....	143
1. Overview.....	143
2. Central and Western Europe	145
3. The Nordic and Baltic countries.....	147
4. Iberia.....	149
5. Mediterranean, Italian, and Balkan Peninsulas and Eastern Europe.....	150
6. Middle East.....	151
g. Asia	152
1. Russia.....	152
2. East Asia	155
3. South Asia	159
4. Southwest Asia	160
h. Oceania.....	163
1. Australia.....	163
2. New Zealand.....	165
3. Southwest Pacific.....	167
4. Northwest Pacific, Micronesia.....	168
8. SEASONAL GLOBAL SUMMARIES.....	171
Acknowledgments	175
Acronyms.....	175
References	178

ABSTRACT—M. O. BARINGER AND T. C. PETERSON

The global mean temperature in 2008 was slightly cooler than that in 2007; however, it still ranks within the 10 warmest years on record. Annual mean temperatures were generally well above average in South America, northern and southern Africa, Iceland, Europe, Russia, South Asia, and Australia. In contrast, an exceptional cold outbreak occurred during January across Eurasia and over southern European Russia and southern western Siberia. There has been a general increase in land-surface temperatures and in permafrost temperatures during the last several decades throughout the Arctic region, including increases of 1° to 2°C in the last 30 to 35 years in Russia. Record setting warm summer (JJA) air temperatures were observed throughout Greenland.

The year 2008 was also characterized by heavy precipitation in a number of regions of northern South America, Africa, and South Asia. In contrast, a prolonged and intense drought occurred during most of 2008 in northern Argentina, Paraguay, Uruguay, and southern Brazil, causing severe impacts to agriculture and affecting many communities.

The year began with a strong La Niña episode that ended in June. Eastward surface current anomalies in the tropical Pacific Ocean in early 2008 played a major role in adjusting the basin from strong La Niña conditions to ENSO-neutral conditions by July–August, followed by a return to La Niña conditions late in December. The La Niña conditions resulted in far-reaching anomalies such as a cooling in the central tropical Pacific, Arctic Ocean, and the regions extending from the Gulf of Alaska to the west coast of North America; changes in the sea surface salinity and heat content anomalies in the tropics; and total column water vapor, cloud cover, tropospheric temperature, and precipitation patterns typical of a La Niña. Anomalously salty ocean surface salinity values in climatologically drier locations and anomalously fresh values in rainier locations observed in recent years generally persisted in 2008, suggesting an increase in the hydrological cycle.

The 2008 Atlantic hurricane season was the 14th busiest on record and the only season ever recorded with major hurricanes each month from July through November. Conversely, activity in the northwest Pacific was considerably below normal during 2008. While activity in the north Indian Ocean was only slightly above average, the season was punctuated by Cyclone Nargis, which killed over 145,000 people; in addition, it was the seventh-strongest cyclone ever in the basin and the most devastating to hit Asia since 1991.

Greenhouse gas concentrations continued to rise, with CO₂ increasing by more than expected based on the 1979 to 2007 trend. In the oceans, the global mean CO₂ uptake for 2007 is estimated to be 1.67 Pg-C, about

0.07 Pg-C lower than the long-term average, making it the third-largest anomaly determined with this method since 1983, with the largest uptake of carbon over the past decade coming from the eastern Indian Ocean. Global phytoplankton chlorophyll concentrations were slightly elevated in 2008 relative to 2007, but regional changes were substantial (ranging to about 50%) and followed long-term patterns of net decreases in chlorophyll with increasing sea surface temperature. Ozone-depleting gas concentrations continued to fall globally to about 4% below the peak levels of the 2000–02 period. Total column ozone concentrations remain well below pre-1980, levels and the 2008 ozone hole was unusually large (sixth worst on record) and persistent, with low ozone values extending into the late December period. In fact the polar vortex in 2008 persisted longer than for any previous year since 1979.

Northern Hemisphere snow cover extent for the year was well below average due in large part to the record-low ice extent in March and despite the record-maximum coverage in January and the shortest snow cover duration on record (which started in 1966) in the North American Arctic. Limited preliminary data imply that in 2008 glaciers continued to lose mass, and full data for 2007 show it was the 17th consecutive year of loss. The northern region of Greenland and adjacent areas of Arctic Canada experienced a particularly intense melt season, even though there was an abnormally cold winter across Greenland's southern half. One of the most dramatic signals of the general warming trend was the continued significant reduction in the extent of the summer sea-ice cover and, importantly, the decrease in the amount of relatively older, thicker ice. The extent of the 2008 summer sea-ice cover was the second-lowest value of the satellite record (which started in 1979) and 36% below the 1979–2000 average. Significant losses in the mass of ice sheets and the area of ice shelves continued, with several fjords on the northern coast of Ellesmere Island being ice free for the first time in 3,000–5,500 years.

In Antarctica, the positive phase of the SAM led to record-high total sea ice extent for much of early 2008 through enhanced equatorward Ekman transport. With colder continental temperatures at this time, the 2007–08 austral summer snowmelt season was dramatically weakened, making it the second shortest melt season since 1978 (when the record began). There was strong warming and increased precipitation along the Antarctic Peninsula and west Antarctica in 2008, and also pockets of warming along coastal east Antarctica, in concert with continued declines in sea-ice concentration in the Amundsen/Bellingshausen Seas. One significant event indicative of this warming was the disintegration and retreat of the Wilkins Ice Shelf in the southwest peninsula area of Antarctica.

I. INTRODUCTION—T. C. Peterson and M. O. Baringer

The primary goal of the annual *State of the Climate* collection of articles is to document the year's current weather and climate events from around the world, such as those shown in Fig. 1.1, and put them into accurate historical perspective, with a particular focus on unusual or anomalous events from the past year. This year the *State of the Climate* brings together more than 280 authors from every continent and from numerous different research groups to collaborate, to share data and insights, and to describe the observed changes in climate from different perspectives. Indeed, this year's report has gained an even wider international perspective with the addition of chapter editors from the Met Office, Environment Canada, and Australia's National Climate Centre, as well as an expanding list of international authors. One of the lessons learned from addressing apparent inconsistencies in observations is that one dataset is great but multiple datasets are better because they confirm results and/or help provide estimates of uncertainty (Karl et al. 2001). With this in mind, the authors and editors seek to provide an inclusive synthesis of diverse sources of weather and climate data to describe what took place across our planet last year.

As a guiding principle behind the inclusion of certain climatic variables into this report, the Global Climate Observing System has identified Essential Climate Variables (GCOS 2003) (see the appendix for a full list of abbreviations) that are necessary to support the United Nations Framework Convention on Climate Change and the Intergovernmental Panel on Climate Change. These variables are defined as those required for international exchange and should be economically and technically feasible to acquire

(Table 1). Some other variables important for research purposes are not included as ECVs; however, the GCOS list of ECVs as well as the other variables presented in this report are continually being reassessed as improved observing technologies emerge. The *State of the Climate* report has strived to include an increasing number of these climatically important variables as the data availability increases and the analysis techniques and attributions improve.

The degree to which each of these ECVs can be assessed and reported depends largely on the level of data availability both currently and within the homogeneous historical record; hence the variables can be divided into categories: being monitored, partially monitored, and not yet monitored. To be listed as monitored, the ECV not only has to be observed across much of the world but there also needs to be a moderately long-term dataset with accompanying analysis. For example, some ECVs, such as water vapor, have been observed across the world for over a century. But in that time, the observing instrumentation has changed, imparting artificial biases to the data. Therefore, to be effectively monitored requires not only observations but also adjustments to the historical data to remove or at least greatly diminish artificial biases. Also, the dataset needs to be updated in near-real time and be included in a peer-reviewed article documenting the reliability of all of these steps. It can be hard work, but progress is being made on many fronts. For example, surface water vapor is expected to be fully included in the report next year. In total, 34 GCOS Essential Climate Variables are reported in the 19th annual *State of the Climate* report.

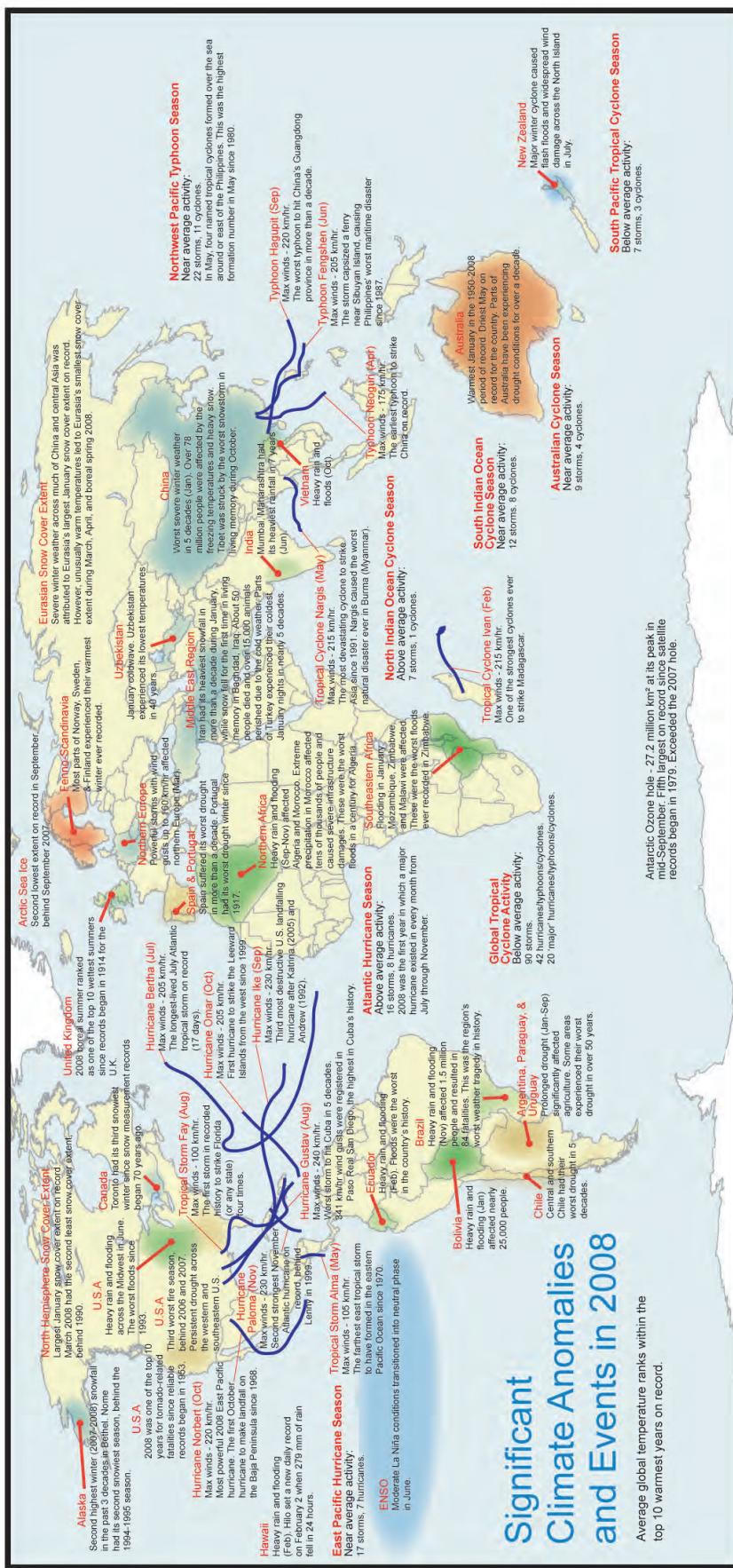


FIG. 1.1. Geographical distribution of notable climate anomalies and events occurring around the planet in 2008.

TABLE I.1. The GCOS ECVs and soil moisture (an emerging ECV) and their monitoring status. Like traffic stop lights, green indicates yes, that this ECV is being monitored on a global or near-global scale and that this report includes a section that describes the ECV's changes over time. Amber indicates that the ECV is explicitly discussed in this year's *State of the Climate*, but the data are not updated through 2008 or the coverage is not global. Red indicates more work needs to be done to monitor and document this ECV.

Atmospheric	Ocean	Terrestrial
Surface	Surface	Soil moisture (Emerging ECV)
Air temperature	Sea surface temperature	Snow cover
Precipitation	Sea surface salinity	Permafrost and seasonally-frozen ground
Air pressure	Sea level	Glaciers and ice caps
Surface radiation budget	Sea state	River discharge
Wind speed and direction	Sea ice	Water use
Water vapor	Current	Ground water
Upper Air	Ocean color	Lake levels
Earth radiation budget	Carbon dioxide partial pressure	Albedo
Upper-air temperature	Subsurface	Land cover
Wind speed and direction	Temperature	Fraction of absorbed photosynthetically active radiation
Water vapor	Salinity	Leaf area index
Cloud properties	Current	Biomass
Composition	Nutrients	Fire disturbance
Carbon dioxide	Carbon	
Methane	Ocean tracers	
Ozone	Phytoplankton	
Nitrous oxide		
Chlorofluorocarbons		
Hydrochlorofluorocarbons		
Hydrofluorocarbons		
Sulphur hexafluorides		
Perfluorocarbons		
Aerosol properties		

