Northwest Pacific ODP882 Plio-Pleistocene Lithic and Diatom Isotope Data ----------------------------------------------------------------------- World Data Center for Paleoclimatology, Boulder and NOAA Paleoclimatology Program ----------------------------------------------------------------------- NOTE: PLEASE CITE ORIGINAL REFERENCE WHEN USING THIS DATA!!!!! NAME OF DATA SET: Northwest Pacific ODP882 Plio-Pleistocene Lithic and Diatom Isotope Data LAST UPDATE: 12/2011 - scale correction for coarse lithic data Original receipt by WDC Paleo 6/2011 CONTRIBUTORS: Bailey, I., Q. Liu, G.E.A. Swann, Z. Jiang, Y. Sun, X. Zhao, and A.P. Roberts. IGBP PAGES/WDCA CONTRIBUTION SERIES NUMBER: 2011-090 WDC PALEO CONTRIBUTION SERIES CITATION: Bailey, I., et al. 2011. Northwest Pacific ODP882 Plio-Pleistocene Lithic and Diatom Isotope Data. IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 2011-090. NOAA/NCDC Paleoclimatology Program, Boulder CO, USA. ORIGINAL REFERENCE: Bailey, I., Q. Liu, G.E.A. Swann, Z. Jiang, Y. Sun, X. Zhao, and A.P. Roberts. 2011. Iron fertilisation and biogeochemical cycles in the sub-Arctic northwest Pacific during the late Pliocene intensification of northern hemisphere glaciation. Earth and Planetary Science Letters, Vol. 307, Issues 3-4, 15 July 2011, pp. 253-265. doi:10.1016/j.epsl.2011.05.029 ABSTRACT: Increases in the low-field mass-specific magnetic susceptibility (X), dropstones and the terrigenous sediment component from Ocean Drilling Program (ODP) Site 882 (~45°N) have been interpreted to indicate a major onset of ice-rafting to the sub-Arctic northwest Pacific Ocean during marine isotope stage (MIS) G6 (from ~2.75 Ma). In contrast, studies of the terrigenous content of sediments cored downwind of ODP Site 882 indicate that dust and disseminated volcanic ash deposition in the sub-Arctic Pacific increased markedly during MIS G6. To investigate the relative contribution of dust, volcanic ash and ice rafting to the Pliocene X increase, we present new high-resolution environmental magnetic and ice-rafted debris records from ODP Sites 882 and 885. Our results demonstrate that the X increase at both sites across MIS G6 is predominantly controlled by a previously overlooked mixture of aeolian dust and volcanic ash. Our findings call into question the reliability of X as a proxy for ice-rafting to the North Pacific. They also highlight a previously undocumented link between iron fertilisation and biogeochemical cycling in the North Pacific at a key stage during intensification of late Pliocene northern hemisphere glaciation. ADDITIONAL REFERENCES: Swann, G.E.A. 2010. Salinity changes in the North West Pacific Ocean during the late Pliocene/early Quaternary from 2.73 Ma to 2.52 Ma. Earth Planet. Sci. Lett. 297, 332-338. Swann, G.E.A., M.A. Maslin, M.J. Leng, H.J. Sloanne, G.H. Haug. 2006. Diatom d18O evidence for the development of the modern halocline system in the subarctic northwest Pacific at the onset of major Northern Hemisphere glaciation. Paleoceanography 21 (PA1009). doi:10.1029/2005PA001147. Tiedemann, R., Haug, G.H., 1995. Astronomical calibration of cycle stratigraphy for Site 882 in the Northwest Pacific. In: Rea, D.K., Basov, I.A., Scholl, D.W., Allan, J.F. (Eds.), Proc. ODP, Sci. Res., 145, pp. 283-292. GEOGRAPHIC REGION: Northwest Pacific PERIOD OF RECORD: 2.8-1.8 Ma FUNDING SOURCES: Marie Curie Fellowship (IIF) proposal 7555, US National Science Foundation (41025013 and 40821091), Chinese Academy of Science '100 Talent Program', NERC post-doctoral fellowship (NE/F012969/1). DESCRIPTION: Coarse lithic and diatom stable silicon isotope data for the Plio-Pleistocene from ODP Site 882A, determined using grain counts and a Finnigan MAT 253 stable isotope ratio mass spectrometre (using step-wise fluorination, with silicon collected as SiF4), respectively. ODP Site 882 lithic count data: Coarse lithic (>150um) abundance and flux estimates. Data reported as lithics and lithics plus fresh volcanic glass. Coarse lithic fluxes were calculated following Peck et al. (2007). Sedimentation rates were estimated from the Site 882 astronomical age model (Tiedemann and Haug, 1995) and shipboard derived dry-bulk density and GRAPE data. ODP Site 882 diatom isotopes: d30Si diatom measurements (n=30) for the interval ~2.85-2.55 Ma at ODP Site 882. Diatoms were extracted using existing techniques with analysed (75-150um) fractions dominated by two taxa; Coscinodiscus marginatus (Ehrenb.) and C. radiatus (Ehrenb.) (Swann, 2010). d30Sidiatom was analysed using step-wise fluorination at the NERC Isotope Geosciences Laboratory, U.K., with silicon collected as SiF4. Measurements were made on a Finnigan MAT 253 stable isotope ratio mass spectrometre with values corrected using NIGL within-run laboratory diatom standard BFCmod against NBS28 (Leng and Sloane, 2008). ODP Site 882A: 50°22'N, 167°36'E, 3244m water depth NOTE: 12/2/2011: coarse lithic data correction. During figure assembly for Bailey et al. (2011) the values assigned to the left-hand axis of Figure 6c were incorrectly formatted. The coarse lithic (>150µm) flux estimates presented here are the correct values and are typically half the values presented in Bailey et al. (2011). This original plotting error does not affect the conclusions of Bailey et al. (2011), but future use of our coarse lithic flux estimates should reference the data presented here. DATA: 1. Bailey et al. 2011 ODP882 Lithic Data, corrected 12/2/2011 Column 1-3: ODP 882 Hole, Core, Section Column 4: Depth, Top (m) Column 5: Depth, Bottom (m) Column 6: MCD Column 7: Age (ka) (Tiedemann and Haug, 1995) Column 8: Lithics (>150um) g-1 Column 9: Lithics + fresh volcanics (>150um) g-1 Column 10: Lithics (>150um) cm-2 ka-1 (x 103) Column 11: Lithics + fresh volcanics (>150um) cm-2 ka-1 (x 103) HoleCoreSect Top(m) Bottom(m) MCD Age(ka) Lith/g Lith+Vol/g Lith/ka Lith+Vol/ka A 9H 1w 0.6 0.62 82.24 1.8091 315 321 0.32 0.32 A 9H 1w 0.8 0.82 82.43 1.8242 63 127 0.03 0.07 A 9H 1w 1.1 1.12 82.72 1.8467 39 128 0.03 0.09 A 9H 1w 1.3 1.32 82.92 1.8635 29 329 0.02 0.24 A 9H 2w 0.1 0.12 83.21 1.8888 6 54 0.00 0.04 A 9H 2w 1 1.02 84.08 1.9453 252 261 0.22 0.22 A 9H 2w 1.2 1.22 84.27 1.9507 33 1792 0.09 4.71 A 9H 2w 1.4 1.42 84.47 1.955 203 213 0.57 0.60 A 9H 2w 1.48 1.5 84.55 1.9568 385 418 1.14 1.23 A 9H 3w 0.2 0.22 84.76 1.9615 602 637 1.58 1.67 A 9H 3w 0.6 0.62 85.15 1.9702 40 112 0.10 0.26 A 9H 3w 0.9 0.92 85.44 1.9772 32 4230 0.11 14.49 A 9H 3w 1.1 1.12 85.63 1.9826 266 317 0.59 0.70 A 9H 3w 1.2 1.22 85.73 1.9853 218 239 0.46 0.51 A 9H 3w 1.25 1.27 85.78 1.9866 163 170 0.33 0.35 A 9H 3w 1.4 1.42 85.92 1.9907 103 152 0.19 0.28 A 9H 4w 0.2 0.22 86.22 1.9988 110 137 0.18 0.22 A 9H 4w 0.3 0.32 86.31 2.0015 87 125 0.18 0.26 A 9H 4w 0.4 0.42 86.41 2.0042 87 87 0.17 0.17 A 9H 4w 0.6 0.62 86.60 2.0096 23 109 0.05 0.22 A 9H 4w 0.75 0.77 86.75 2.0145 139 168 0.27 0.33 A 9H 4w 0.85 0.87 86.85 2.0187 242 458 0.32 0.61 A 9H 4w 0.9 0.92 86.90 2.0208 188 301 0.26 0.42 A 9H 4w 1.1 1.12 87.09 2.0291 478 504 0.46 0.49 A 9H 4w 1.2 1.22 87.19 2.0333 259 323 0.29 0.37 A 9H 4w 1.4 1.42 87.38 2.0416 339 362 0.44 0.47 A 9H 4w 1.48 1.5 87.46 2.0449 320 341 0.40 0.43 A 9H 5w 0.2 0.22 87.67 2.0535 462 657 0.71 1.02 A 9H 5w 0.3 0.32 87.77 2.0566 559 677 0.94 1.14 A 9H 5w 0.5 0.52 87.96 2.0626 228 282 0.40 0.49 A 9H 5w 0.7 0.72 88.16 2.0687 29 745 0.06 1.67 A 9H 5w 0.8 0.82 88.26 2.0717 168 14274 0.41 34.95 A 9H 5w 0.9 0.92 88.35 2.0748 401 3524 0.67 5.91 A 9H 5w 1.1 1.12 88.55 2.0808 0 6689 0.00 16.34 A 9H 5w 1.15 1.17 88.59 2.0824 173 258 0.36 0.54 A 9H 5w 1.3 1.32 88.74 2.0874 53 135 0.10 0.26 A 9H 5w 1.4 1.42 88.84 2.0922 146 1246 0.16 1.35 A 9H 5w 1.48 1.5 88.92 2.0959 142 661 0.17 0.80 A 9H 6w 0.1 0.12 89.03 2.1016 1659 1925 1.68 1.95 A 9H 6w 0.2 0.22 89.13 2.1063 481 1013 0.55 1.16 A 9H 6w 0.45 0.47 89.37 2.1182 124 1270 0.15 1.48 A 9H 6w 0.6 0.62 89.52 2.1253 62 1071 0.08 1.44 A 9H 6w 0.7 0.72 89.61 2.13 24 1835 0.04 2.69 A 9H 6w 1 1.02 89.91 2.1419 190 386 0.23 0.47 A 9H 6w 1.2 1.22 90.10 2.1499 235 260 0.24 0.27 A 9H 6w 1.25 1.27 90.15 2.1519 119 163 0.12 0.16 A 9H 6w 1.4 1.42 90.29 2.1579 206 262 0.26 0.33 A 9H 7w 0.06 0.08 90.45 2.1642 199 199 0.29 0.29 A 10H 1w 0.4 0.42 92.45 2.2028 50 53 0.10 0.10 A 10H 1w 0.5 0.52 92.55 2.2046 160 163 0.34 0.35 A 10H 1w 0.6 0.62 92.64 2.2063 38 43 0.08 0.09 A 10H 1w 0.8 0.82 92.84 2.2099 0 13 0.00 0.03 A 10H 1w 1 1.02 93.03 2.2134 22 33 0.05 0.08 A 10H 1w 1.1 1.12 93.13 2.2151 115 117 0.34 0.34 A 10H 1w 1.4 1.42 93.41 2.2197 410 417 0.89 0.91 A 10H 2w 0.3 0.32 93.80 2.2255 30 30 0.02 0.02 A 10H 2w 0.5 0.52 93.99 2.2284 130 140 0.29 0.32 A 10H 2w 0.7 0.72 94.18 2.2314 15 65 0.03 0.12 A 10H 2w 0.9 0.92 94.38 2.2343 169 169 0.35 0.35 A 10H 2w 1.1 1.12 94.57 2.2372 10 10 0.02 0.02 A 10H 2w 1.3 1.32 94.76 2.2401 0 278 0.00 0.86 A 10H 2w 1.48 1.5 94.93 2.2428 5 81 0.01 0.24 A 10H 3w 0.2 0.22 95.14 2.246 0 10 0.00 0.03 A 10H 3w 0.4 0.42 95.34 2.2489 81 88 0.23 0.25 A 10H 3w 0.6 0.62 95.53 2.2519 241 483 0.95 1.91 A 10H 3w 0.8 0.82 95.72 2.2584 217 222 0.28 0.28 A 10H 3w 0.95 0.97 95.87 2.2635 508 513 0.74 0.75 A 10H 3w 1.1 1.12 96.01 2.2685 201 229 0.22 0.25 A 10H 3w 1.4 1.42 96.30 2.2786 27 27 0.02 0.02 A 10H 4w 0.2 0.22 96.59 2.2887 0 14 0.00 0.02 A 10H 4w 0.5 0.52 96.88 2.2989 12 17 0.02 0.02 A 10H 4w 0.9 0.92 97.26 2.3134 48 55 0.05 0.05 A 10H 4w 1.4 1.42 97.74 2.3428 1019 1027 0.89 0.90 A 10H 4w 1.48 1.5 97.82 2.3475 50 57 0.04 0.04 A 10H 5w 0.3 0.32 98.13 2.3663 0 4 0.00 0.00 A 10H 5w 0.4 0.42 98.22 2.3722 33 40 0.03 0.04 A 10H 5w 0.5 0.52 98.32 2.3752 0 0 0.00 0.00 A 10H 5w 0.6 0.62 98.41 2.3769 65 69 0.17 0.18 A 10H 5w 0.9 0.92 98.70 2.3821 122 178 0.32 0.46 A 10H 5w 1.2 1.22 98.99 2.3872 25 3779 0.05 8.26 A 10H 5w 1.4 1.42 99.18 2.3906 45 64 0.12 0.17 A 10H 6w 0.1 0.12 99.38 2.394 8 12 0.02 0.03 A 10H 6w 0.3 0.32 99.57 2.3975 23 45 0.06 0.12 A 10H 6w 0.5 0.52 99.76 2.4009 4 17 0.01 0.04 A 10H 6w 0.7 0.72 99.95 2.4043 32 51 0.08 0.13 A 10H 6w 0.9 0.92 100.14 2.4077 35 408 0.11 1.32 A 10H 6w 1.1 1.12 100.34 2.4112 546 793 1.90 2.76 A 10H 6w 1.4 1.42 100.63 2.4181 26 50 0.06 0.12 A 11H 1w 0.5 0.52 102.73 2.5 0 62 0.00 0.05 A 11H 1w 0.6 0.62 102.83 2.505 5 16 0.01 0.02 A 11H 1w 0.65 0.67 102.88 2.5075 6 8 0.01 0.01 A 11H 1w 0.72 0.74 102.95 2.511 162 199 0.15 0.18 A 11H 1w 0.8 0.82 103.03 2.515 208 217 0.18 0.19 A 11H 1w 1.17 1.19 103.38 2.5335 166 179 0.19 0.20 A 11H 1w 1.32 1.34 103.53 2.5384 109 130 0.20 0.24 A 11H 1w 1.4 1.42 103.61 2.5409 328 372 0.54 0.61 A 11H 1w 1.48 1.5 103.69 2.5435 112 134 0.14 0.16 A 11H 2w 0.1 0.12 103.80 2.5472 69 81 0.06 0.07 A 11H 2w 0.6 0.62 104.29 2.563 0 35 0.00 0.04 A 11H 2w 0.9 0.92 104.58 2.5724 0 0 0.00 0.00 A 11H 2w 1.1 1.12 104.77 2.5787 3 81 0.00 0.12 A 11H 2w 1.3 1.32 104.97 2.584 3 66 0.00 0.09 A 11H 3w 0.3 0.32 105.45 2.5967 11 137 0.02 0.19 A 11H 3w 0.5 0.52 105.65 2.6017 0 117 0.00 0.18 A 11H 3w 0.83 0.85 105.97 2.6163 0 134 0.00 0.11 A 11H 3w 0.98 1 106.11 2.624 0 79 0.00 0.08 A 11H 3w 1.12 1.14 106.25 2.627 32 113 0.07 0.24 A 11H 3w 1.4 1.42 106.52 2.6318 131 207 0.35 0.55 A 11H 3w 1.48 1.5 106.60 2.6331 273 337 0.52 0.65 A 11H 4w 0.4 0.42 107.01 2.6402 0 0 0.00 0.00 A 11H 4w 0.7 0.72 107.30 2.6453 0 0 0.00 0.00 A 11H 4w 0.9 0.92 107.49 2.6486 7 73 0.02 0.22 A 11H 4w 1 1.02 107.59 2.6507 20 28 0.05 0.07 A 11H 4w 1.2 1.22 107.78 2.6572 3 3 0.00 0.00 A 11H 4w 1.3 1.32 107.88 2.6605 0 25 0.00 0.04 A 11H 4w 1.38 1.4 107.96 2.6631 0 404 0.00 1.02 A 11H 4w 1.45 1.47 108.03 2.6654 12 23 0.01 0.03 A 11H 5w 0.1 0.12 108.17 2.6704 6 6 0.01 0.01 A 11H 5w 0.4 0.42 108.46 2.6766 13 13 0.03 0.03 A 11H 5w 0.65 0.67 108.71 2.6811 3 3 0.01 0.01 A 11H 5w 1 1.02 109.04 2.6875 12 12 0.02 0.02 A 11H 5w 1.2 1.22 109.24 2.6912 0 0 0.00 0.00 A 11H 5w 1.4 1.42 109.43 2.6948 0 27 0.00 0.07 A 11H 6w 0.1 0.12 109.63 2.6986 0 5 0.00 0.01 A 11H 6w 0.3 0.32 109.82 2.7024 0 0 0.00 0.00 A 11H 6w 0.4 0.42 109.92 2.7043 5 5 0.01 0.01 A 11H 6w 0.5 0.52 110.02 2.7061 28 28 0.07 0.07 A 11H 6w 0.6 0.62 110.11 2.708 30 30 0.06 0.06 A 11H 6w 0.7 0.72 110.21 2.7099 0 0 0.00 0.00 A 11H 6w 0.8 0.82 110.31 2.7118 0 0 0.00 0.00 A 11H 6w 0.9 0.92 110.40 2.7137 0 6 0.00 0.01 A 11H 6w 1 1.02 110.50 2.7156 0 0 0.00 0.00 A 11H 6w 1.1 1.12 110.60 2.7175 9 9 0.02 0.02 A 11H 6w 1.2 1.22 110.70 2.7194 25 25 0.05 0.05 A 11H 6w 1.3 1.32 110.79 2.7213 0 0 0.00 0.00 A 11H 6w 1.4 1.42 110.89 2.7231 12 12 0.03 0.03 A 11H 6w 1.48 1.5 110.97 2.7247 15 15 0.03 0.03 A 11H 7w 0.1 0.12 111.08 2.7269 97 97 0.24 0.24 A 11H 7w 0.2 0.22 111.18 2.7288 17 17 0.04 0.04 A 11H 7w 0.3 0.32 111.28 2.7298 147 152 0.64 0.66 A 11H 7w 0.4 0.42 111.37 2.7307 92 92 0.32 0.32 A 12H 1w 0.4 0.42 112.83 2.7439 16 16 0.05 0.05 A 12H 1w 0.5 0.52 112.93 2.7448 9 9 0.02 0.02 A 12H 1w 0.6 0.62 113.02 2.7457 12 24 0.02 0.05 A 12H 1w 0.7 0.72 113.12 2.7466 0 14 0.00 0.02 A 12H 1w 0.8 0.82 113.21 2.7474 0 0 0.00 0.00 A 12H 1w 1 1.02 113.40 2.7492 0 0 0.00 0.00 A 12H 1w 1.2 1.22 113.59 2.751 0 48 0.00 0.14 A 12H 1w 1.4 1.42 113.78 2.7527 0 0 0.00 0.00 A 12H 2w 0.1 0.12 113.97 2.7548 0 0 0.00 0.00 A 12H 2w 0.3 0.32 114.16 2.7568 0 0 0.00 0.00 A 12H 2w 0.5 0.52 114.35 2.7589 0 0 0.00 0.00 A 12H 2w 0.7 0.72 114.54 2.761 0 0 0.00 0.00 A 12H 2w 1 1.02 114.83 2.7641 0 0 0.00 0.00 A 12H 2w 1.3 1.32 115.11 2.7672 0 0 0.00 0.00 A 12H 3w 0.1 0.12 115.39 2.7703 16 16 0.04 0.04 A 12H 3w 0.4 0.42 115.68 2.7734 31 61 0.05 0.10 A 12H 3w 0.7 0.72 115.96 2.7765 16 16 0.03 0.03 A 12H 3w 1 1.02 116.25 2.7796 0 0 0.00 0.00 A 12H 3w 1.1 1.12 116.34 2.7807 0 0 0.00 0.00 A 12H 3w 1.2 1.22 116.44 2.7817 0 0 0.00 0.00 A 12H 3w 1.4 1.42 116.63 2.7838 0 39 0.00 0.05 A 12H 4w 0.2 0.22 117.01 2.7863 0 0 0.00 0.00 A 12H 4w 0.4 0.42 117.19 2.7877 0 0 0.00 0.00 A 12H 4w 0.7 0.72 117.48 2.7898 0 0 0.00 0.00 A 12H 4w 0.9 0.92 117.67 2.7913 0 0 0.00 0.00 A 12H 4w 0.95 0.97 117.72 2.7916 0 0 0.00 0.00 A 12H 4w 1.4 1.42 118.14 2.7948 0 0 0.00 0.00 2. Bailey et al. 2011 ODP882 Diatom Isotope Data Column 1-4: ODP 882 Hole, Core, Section, Half Column 5: Depth, Top of interval (cm) Column 6: Depth, Bottom of interval (cm) Column 7: Age (Ma) Column 8: d18Odiatom (SMOW) Column 9: d30Sidiatom (NBS28) Column 10: C. marginatus Column 11: C. radiatus Column 12: Other Column 13: Reference for d18Odiatom Relative biovolume abundance(%) HoleCoreSectHalf Top Bottom Age(Ma) d18Odiat. d30Sidiat. C.marg C.rad Other Reference for d18Odiatom A 11 1 W 89 91 2.5202 42.1 62.8 37.2 0.0 Swann (2010) A 11 1 W 99 101 2.5252 41.6 0.99 65.4 34.6 0.0 Swann (2010) A 11 1 W 109 111 2.5302 40.3 81.9 17.7 0.4 Swann (2010) A 11 1 W 120 122 2.5351 42.4 59.9 40.1 0.0 Swann (2010) A 11 2 W 2 4 2.5452 43.9 0.66 32.0 68.0 0.0 Swann (2010) A 11 2 W 18 20 2.5503 41.8 0.58 52.8 46.2 1.0 Swann (2010) A 11 2 W 24 28 2.5525 42.6 3.4 96.4 0.2 Swann et al. (2006) A 11 2 W 34 36 2.5553 42.5 14.7 85.2 0.1 Swann (2010) A 11 2 W 50 52 2.5604 40.5 0.49 61.0 36.0 3.0 Swann (2010) A 11 2 W 76 80 2.5689 39.3 34.8 64.1 1.1 Swann et al. (2006) A 11 2 W 122 126 2.5828 38.4 18.1 80.6 1.3 Swann et al. (2006) A 11 2 W 136 140 2.5863 41.3 67.3 32.2 0.6 Swann et al. (2006) A 11 3 W 3 5 2.5903 43.3 1.05 21.7 78.2 0.0 Swann (2010) A 11 3 W 12 16 2.5928 38.7 6.3 93.1 0.6 Swann et al. (2006) A 11 3 W 20 22 2.5945 42.5 0.92 34.3 64.7 1.0 Swann (2010) A 11 3 W 40 42 2.5995 43.1 0.65 11.8 88.2 0.0 Swann (2010) A 11 3 W 60 62 2.6051 42.3 10.3 89.7 0.0 Swann (2010) A 11 3 W 79 81 2.615 41.0 20.4 79.6 0.0 Swann (2010) A 11 3 W 101 103 2.6255 38.3 0.91 48.0 52.0 0.0 Swann (2010) A 11 4 W 5 7 2.6346 42.2 31.3 68.5 0.2 Swann (2010) A 11 4 W 28 32 2.6386 37.1 4.9 92.8 2.2 Swann et al. (2006) A 11 4 W 35 37 2.6396 43.0 5.1 94.9 0.0 Swann (2010) A 11 4 W 65 67 2.6447 42.1 22.7 77.3 0.0 Swann (2010) A 11 4 W 77 81 2.6469 45.0 8.3 87.0 4.7 Swann et al. (2006) A 11 4 W 84 88 2.648 39.8 9.8 90.1 0.0 Swann et al. (2006) A 11 4 W 95 97 2.6497 39.8 42.2 57.8 0.0 Swann (2010) A 11 4 W 112 114 2.655 41.4 22.8 77.2 0.0 Swann (2010) A 11 4 W 142 144 2.6649 40.6 34.2 65.8 0.0 Swann (2010) A 11 5 W 7 9 2.6698 42.7 1.19 47.9 52.1 0.0 Swann (2010) A 11 5 W 54 58 2.6795 43.4 25.3 71.9 2.8 Swann et al. (2006) A 11 5 W 76 80 2.6836 42.3 20.0 73.5 6.5 Swann et al. (2006) A 11 5 W 83 85 2.6847 43.4 0.81 38.0 61.8 0.2 Swann (2010) A 11 5 W 108 112 2.6894 39.9 24.4 74.3 1.3 Swann et al. (2006) A 11 5 W 137 141 2.6947 38.0 37.7 61.3 1.0 Swann et al. (2006) A 11 6 W 76 80 2.7115 41.1 17.4 73.5 9.1 Swann et al. (2006) A 11 6 W 84 88 2.713 39.4 28.6 61.6 9.8 Swann et al. (2006) A 11 7 W 28 32 2.7307 41.7 61.2 35.8 3.1 Swann et al. (2006) B 12 3 W 58 62 2.7348 44.0 1.65 91.4 8.3 0.3 Swann et al. (2006) B 12 3 W 117 121 2.74 44.2 1.60 88.3 11.6 0.1 Swann et al. (2006) B 12 3 W 146 150 2.7426 43.8 1.62 98.3 1.3 0.4 Swann et al. (2006) A 12 1 W 84 88 2.7481 44.1 1.59 96.0 2.5 1.5 Swann et al. (2006) A 12 2 W 54 58 2.7595 44.0 71.3 28.2 0.5 Swann et al. (2006) A 12 2 W 108 112 2.7651 44.6 1.53 98.5 1.5 0.1 Swann et al. (2006) A 12 3 W 25 29 2.772 44.8 92.1 7.9 0.0 Swann et al. (2006) A 12 3 W 85 89 2.7782 44.4 1.46 96.6 2.9 0.5 Swann et al. (2006) A 12 3 W 87 91 2.7784 44.1 1.48 93.8 5.3 1.0 Swann et al. (2006) A 12 3 W 144 148 2.7843 44.7 1.39 97.6 2.4 0.0 Swann et al. (2006) A 12 4 W 54 58 2.7888 43.7 1.58 93.4 6.1 0.5 Swann et al. (2006) A 12 4 W 108 112 2.7926 44.1 1.47 97.5 2.5 0.0 Swann et al. (2006) A 12 5 W 23 27 2.7972 43.4 1.48 95.1 4.6 0.3 Swann et al. (2006) A 12 5 W 54 58 2.7994 44.2 1.40 88.5 11.0 0.5 Swann et al. (2006) A 12 5 W 84 88 2.8015 43.7 1.55 96.1 3.4 0.5 Swann et al. (2006) A 12 5 W 144 148 2.8058 44.3 1.49 96.6 3.4 0.0 Swann et al. (2006) A 12 6 W 54 58 2.8101 44.8 1.49 69.8 20.9 9.3 Swann et al. (2006) B 13 2 W 128 132 2.8149 44.3 1.45 86.3 7.1 6.6 Swann et al. (2006) B 13 3 W 68 72 2.822 44.7 1.48 93.2 4.8 1.9 Swann et al. (2006) B 13 3 W 128 112 2.826 44.8 1.48 91.1 4.2 4.7 Swann et al. (2006) B 13 4 W 68 72 2.8339 43.7 1.48 92.8 6.3 1.0 Swann et al. (2006) A 13 2 W 77 81 2.8465 43.3 1.38 93.6 4.4 2.0 Swann et al. (2006)