# Arctic Ocean Sediment Geochemistry, Lithology, d18O, Productivity, and Bottom Water Mg/Ca Temperature Data during Marine Isotope Stages 12 through MIS 1 #----------------------------------------------------------------------- # World Data Service for Paleoclimatology, Boulder # and # NOAA Paleoclimatology Program #----------------------------------------------------------------------- # Template Version 3.0 # Encoding: UTF-8 # NOTE: Please cite original publication, online resource and date accessed when using this data. # If there is no publication information, please cite Investigator, title, online resource and date accessed. # # Description/Documentation lines begin with # # Data lines have no # # # Online_Resource: https://www.ncdc.noaa.gov/paleo/study/28930 # Description: NOAA Landing Page # Online_Resource: https://www1.ncdc.noaa.gov/pub/data/paleo/contributions_by_author/cronin2019/cronin2019-cores.txt # Description: NOAA location of the template # # Data_Type: Paleoceanography # # Dataset_DOI: # # Parameter_Keywords: oxygen isotopes, geochemistry, lithology #--------------------------------------- # Contribution_Date # Date: 2020-02-04 #--------------------------------------- # File_Last_Modified_Date # Date: 2020-02-04 #--------------------------------------- # Title # Study_Name: Arctic Ocean Sediment Geochemistry, Lithology, d18O, Productivity, and Bottom Water Mg/Ca Temperature Data during Marine Isotope Stages 12 through MIS 1 #--------------------------------------- # Investigators # Investigators: Cronin, T.M.; Keller, K.J.; Farmer, J.R.; Schaller, M.F.; O'Regan, M.; Poirier, R.; Coxall, H.; Dwyer, G.S.; Bauch, H.; Kindstedt, I.G.; Jakobsson, M.; Marzen, R.; Santin, E. #--------------------------------------- # Description_Notes_and_Keywords # Description: Box and trigger cores used for last 40 ka, no orbital-scale sediment. # Provided Keywords: Marine Isotope Stage 11, Interglacial, Paleoclimate, Arctic, Sea Ice #--------------------------------------- # Publication # Authors: Cronin, T.M., Keller, K.J., Farmer, J.R., Schaller, M.F., O'Regan, M., Poirier, R., Coxall, H., Dwyer, G.S., Bauch, H., Kindstedt, I.G., Jakobsson, M., Marzen, R. and Santin, E. # Published_Date_or_Year: 2019 # Published_Title: Interglacial Paleoclimate in the Arctic # Journal_Name: Paleoceanography and Paleoclimatology # Volume: 34 # Edition: # Issue: # Pages: 1959-1979 # Report_Number: # DOI: 10.1029/2019PA003708 # Online_Resource: # Full_Citation: # Abstract: Marine Isotope Stage 11 from ~424 to 374 ka experienced peak interglacial warmth and highest global sea level ~410-400 ka. MIS 11 has received extensive study on the causes of its long duration and warmer than Holocene climate, which is anomalous in the last half million years. However, a major geographic gap in MIS 11 proxy records exists in the Arctic Ocean where fragmentary evidence exists for a seasonally sea ice-free summers and high sea-surface temperatures (SST; ~8-10 C near the Mendeleev Ridge). We investigated MIS 11 in the western and central Arctic Ocean using 12 piston cores and several shorter cores using proxies for surface productivity (microfossil density), bottom water temperature (magnesium/calcium ratios), the proportion of Arctic Ocean Deep Water versus Arctic Intermediate Water (key ostracode species), sea ice (epipelagic sea ice dwelling ostracode abundance), and SST (planktic foraminifers). We produced a new benthic foraminiferal d18O curve, which signifies changes in global ice volume, Arctic Ocean bottom temperature, and perhaps local oceanographic changes. Results indicate that peak warmth occurred in the Amerasian Basin during the middle of MIS 11 roughly from 410 to 400 ka. SST were as high as 8-10 C for peak interglacial warmth, and sea ice was absent in summers. Evidence also exists for abrupt suborbital events punctuating the MIS 12-MIS 11-MIS 10 interval. These fluctuations in productivity, bottom water temperature, and deep and intermediate water masses (Arctic Ocean Deep Water and Arctic Intermediate Water) may represent Heinrich-like events possibly involving extensive ice shelves extending off Laurentide and Fennoscandian Ice Sheets bordering the Arctic. #--------------------------------------- # Publication # Authors: Cronin, T.M., DeNinno, L.H., Polyak, L., Caverly, E.K., Poore, R.Z., Brenner, A., Rodriguez-Lazaro, J., & Marzen, R.E. # Published_Date_or_Year: 2014 # Published_Title: Quaternary ostracode and foraminiferal biostratigraphy and paleoceanography in the western Arctic Ocean # Journal_Name: Marine Micropaleontology # Volume: 111 # Edition: # Issue: # Pages: 118-133 # Report_Number: # DOI: 10.1016/j.marmicro.2014.05.001 # Online_Resource: # Full_Citation: Cronin, T.M., DeNinno, L.H., Polyak, L., Caverly, E.K., Poore, R.Z., Brenner, A., Rodri- guez-Lazaro, J., Marzen, R.E., 2014. Quaternary ostracode and foraminiferal biostratigraphy and paleoceanography in the western Arctic Ocean. Mar. Micropaleontol. 111, 118e133. http://dx.doi.org/10.1016/j.marmicro.2014.05.001. # Abstract: The stratigraphic distributions of ostracodes and selected calcareous benthic and planktic foraminiferal species were studied in sediment cores from ~ 700 to 2700 m water depth on the Northwind, Mendeleev, and Lomonosov Ridges in the western Arctic Ocean. Microfaunal records in most cores cover mid- to late Quaternary sediments deposited in the last ~600 ka, with one record covering the last ~1.5 Ma. Results show a progressive faunal turn- over during the mid-Pleistocene transition (MPT, ~ 1.2 to 0.7 Ma) and around the mid-Brunhes event (MBE, ~ 0.4 Ma) reflecting major changes in Arctic Ocean temperature, circulation and sea-ice cover. The observed MPT shift is characterized by the extinction of species that today inhabit the sea-ice free subpolar North Atlantic and/or sea- sonally sea-ice free Nordic Seas (Echinocythereis sp., Rockallia cf. enigmatica, Krithe cf. aquilonia, Pterygocythereis vannieuwenhuisei). After a very warm interglacial during marine isotope stage (MIS) 11 dominated by the tem- perate planktic foraminifer Turborotalita egelida, the MBE experienced a shift to polar assemblages characteristic of predominantly perennial Arctic sea-ice cover during the interglacial and interstadial periods of the last 300 ka. These include the planktic foraminifera Neogloboquadrina pachyderma, the sea-ice dwelling ostracode Acetabulastoma arcticum and associated benthic taxa Pseudocythere caudata, Pedicythere neofluitans, and Polycope spp. Several species can be used as biostratigraphic markers of specific intervals such as ostracodes Rabilimis mirabilis - MIS 5 and P. vannieuwenhuisei extinction after MIS 11, and foraminiferal abundance zones Bulimina aculeata - late MIS 5 and Bolivina arctica - MIS 5-11. #--------------------------------------- # Publication # Authors: Cronin, T.S., Dwyer, G.K., Caverly, E., Farmer, J., DeNinno, L., Rodriguez-Lazaro, J., & Gemery, L. # Published_Date_or_Year: 2017 # Published_Title: Enhanced Arctic Amplification Began at the Mid-Brunhes Event ~400,000 years ago. # Journal_Name: Scientific Reports # Volume: 7 # Edition: # Issue: # Pages: # Report_Number: # DOI: 10.1038/s41598-017-13821-2 # Online_Resource: # Full_Citation: # Abstract: #--------------------------------------- # Publication # Authors: Marzen, R.E., DeNinno, L.H., Cronin, T.M. # Published_Date_or_Year: 2016 # Published_Title: Calcareous microfossil-based orbital cyclostratigraphy in the Arctic Ocean # Journal_Name: Quaternary Science Reviews # Volume: 149 # Edition: # Issue: # Pages: 109-121 # Report_Number: # DOI: 10.1016/j.quascirev.2016.07.004 # Online_Resource: # Full_Citation: # Abstract: Microfaunal and geochemical proxies from marine sediment records from central Arctic Ocean (CAO) submarine ridges suggest a close relationship over the last 550 thousand years (kyr) between orbital- scale climatic oscillations, sea-ice cover, marine biological productivity and other parameters. Multiple paleoclimate proxies record glacial to interglacial cycles. To understand the climate-cryosphere- productivity relationship, we examined the cyclostratigraphy of calcareous microfossils and con- structed a composite Arctic Paleoclimate Index (API) "stack" from benthic foraminiferal and ostracode density from 14 sediment cores. Following the hypothesis that API is driven mainly by changes in sea-ice related productivity, the API stack shows the Arctic experienced a series of highly productive interglacials and interstadials every ~20 kyr. These periods signify minimal ice shelf and sea-ice cover and maximum marine productivity. Rapid transitions in productivity are seen during shifts from interglacial to glacial climate states. Discrepancies between the Arctic API curves and various global climatic, sea-level and ice- volume curves suggest abrupt growth and decay of Arctic ice shelves related to climatic and sea level oscillations. #--------------------------------------- # Funding_Agency # Funding_Agency_Name: United States Geological Survey (USGS) Land Change Science Program # Grant: #--------------------------------------- # Funding_Agency # Funding_Agency_Name: Lamont Doherty Earth Observatory # Grant: #--------------------------------------- # Funding_Agency # Funding_Agency_Name: National Science Foundation # Grant: DGE-1144155 #--------------------------------------- # Site_Information # Site_Name: Arctic Ocean Core Synthesis # Location: Arctic Ocean # Country: # Northernmost_Latitude: 88.87 # Southernmost_Latitude: 75.31 # Easternmost_Longitude: 179 # Westernmost_Longitude: -179 # Elevation: #--------------------------------------- # Data_Collection # Collection_Name: Arctic Cores Cronin2019 # First_Year: # Last_Year: # Time_Unit: # Core_Length: # Notes: #--------------------------------------- # Chronology_Information # Chronology: #--------------------------------------- # Variables # Data variables follow that are preceded by "##" in columns one and two. # Variables list, one per line, shortname-tab-longname components (9 components: what, material, error, units, seasonality, archive, detail, method, C or N for Character or Numeric data) ## water_depth_m collection water depth,,,meter,,paleoceanography,,,N, ## Name sample identification,,,,,paleoceanography,,,C,a short name for the core ## Core sample identification,,,,,paleoceanography,,,C,core number and label ## Longitude longitude,,,degree east,,paleoceanography,,,N, ## Latitude latitude,,,degree north,,paleoceanography,,,N, ## Location notes,,,,,paleoceanography,,,C,location of core ## notes notes,,,,,paleoceanography,,,C, #------------------------ # Data: # Data lines follow (have no #) # Data line format - tab-delimited text, variable short name as header # Missing_Values: NaN water_depth_m Name Core Longitude Latitude Location notes 1035 P9 P1-94-AR-P9 -176.04 78.133 Mendeleev Ridge NaN 1470 P21 P1-93-AR-P21 -154.21 76.86 Northwind Ridge NaN 765 P30 P1-92-AR-P30 -158.05 75.31 Northwind Ridge NaN 1470 P39 P1-92-AR-P39 -156.03 75.84 Northwind Ridge NaN 700 P40 P1-92-AR-P40 -156.55 76.26 Northwind Ridge NaN 2726 P15 P1-94-AR-P15 -173.32 80.2 Mendeleev Ridge NaN 800 HLY6 HLY0503-6 -176.2938 78.98615 Mendeleev Ridge NaN 811 LOMROG-4 LOMROG04-07 -53.77 86.7 Lomonosov Ridge NaN 951 P23 P1-93-AR-P23 -155.07 76.95 Northwind Ridge NaN 1568 P16 P1-94-AR-PC16 -178.7167 80.333 Mendeleev Ridge NaN 2212 16-9PC AO16-9-PC1 -148.3258 85.9557 Alpha Ridge NaN 1673 P10 P1-94-AR10 -174.6333 78.15 Mendeleev Ridge NaN 2654 HLY-18TC *HLY0503-18TC -146.683 88.45 Lomonosov Ridge NaN 2217 B17 *Pl-94AR-B17 178.97 81.27 Mendeleev Ridge NaN 1533 B16 *Pl-94AR-B16 -178.71 80.34 Mendeleev Ridge NaN 1020 B26 Pl-94AR-BC26 143.48 88.8 Lomonosov Slope Cores from Cronin et al. 2012 1031 B8 Pl-94AR-BC8 -176.74 78.13 Mendeleev Ridge Cores from Cronin et al. 2012 1230 PS79-1 PS-2179-1 GKG 138.03 87.75 Lomonosov ridge Cores from Cronin et al. 2012 2036 PS86-5 PS-2186-5 GKG 140.49 88.52 Lomonosov ridge Cores from Cronin et al. 2012 1228 PS79-3 PS-2179-3 MUC 138.16 87.75 Lomonosov Ridge Cores from Cronin et al. 2012 1051 PS85-4 PS-2185-4 MUC 144.482 87.53 Lomonosov Ridge Cores from Cronin et al. 2012 2004 PS86-3 PS-2186-3 MUC 140.36 88.51 Lomonosov Ridge Cores from Cronin et al. 2012 2993 PS06-4 PS-2206-4 MUC -2.51 84.28 Gakkel Ridge Cores from Cronin et al. 2012 3047 PS63-2 PS2163-2 GKG 59.23 86.24 Gakkel Ridge Cores from Cronin et al. 2012 1640 PS84-1 PS2184-1 GKG 148.14 87.61 Lomonosov ridge Cores from Cronin et al. 2012 1674 PS84-3 PS2184-3 MUC 148.25 87.61 Lomonosov Ridge Cores from Cronin et al. 2012 1609 B12 Pl-94AR-BC12A -174.28 79.98 Mendeleev Ridge Cores from Cronin et al. 2012 2400 B19 Pl-94AR-BC19B 175.76 82.45 Mendeleev Slope Cores from Cronin et al. 2012 3110 B20 Pl-94AR-BC20A 174.11 83.17 Wrangel Abyssal Plain Cores from Cronin et al. 2012 1990 B28 Pl-94AR-BC28 140.18 88.87 Lomonosov Ridge Cores from Cronin et al. 2012 3040 PS63-1 PS2163-1 MUC 59.22 86.24 Gakkel Ridge Cores from Cronin et al. 2012