# Arctic Ostracode Database 2020 (AOD2020) #----------------------------------------------------------------------- # World Data Service for Paleoclimatology, Boulder # and # NOAA Paleoclimatology Program #----------------------------------------------------------------------- # Template Version 3.0 # Encoding: UTF-8 # NOTE: Please cite original publication, online resource and date accessed when using this data. # If there is no publication information, please cite Investigator, title, online resource and date accessed. # # Description/Documentation lines begin with # # Data lines have no # # # Online_Resource: https://www.ncdc.noaa.gov/paleo/study/32312 # Description: NOAA Landing Page # Online_Resource: https://www.ncei.noaa.gov/pub/data/paleo/contributions_by_author/cronin2021/cronin2021-aod2020-tempsource.txt # Description: NOAA Template (tab-delimited data); Arctic Ostracode Database 2020 Temperature Source Table # # # Data_Type: Paleoceanography # # Dataset_DOI: # # Parameter_Keywords: Population abundance #--------------------------------------- # Contribution_Date # Date: 2021-01-11 #--------------------------------------- # File_Last_Modified_Date # Date: 2021-01-11 #--------------------------------------- # Title # Study_Name: Arctic Ostracode Database 2020 (AOD2020) #--------------------------------------- # Investigators # Investigators: Cronin, T.M.; Gemery, L.; Briggs, Jr., W.M.; Brouwers, E.M.; Schornikov, E.I.; Stepanova, A. ; Wood, Adrian M.; Yasuhara, M.; Siu, S. #--------------------------------------- # Description_Notes_and_Keywords # Description: Note: Gemery et al.(2015) sources AOD2015; more than 200 samples have been added to this updated version. There is no publication affiliated with AOD2020. # Provided Keywords: Arctic, Benthic, Biogeography, Crustacea, Ecology, Ostracoda, Meiofauna #--------------------------------------- # Publication # Authors: Gemery, L., T.M. Cronin, W.M. Briggs, Jr., E.M. Brouwers, E.I. Schornikov, A. Stepanova, A. Wood, M. Yasuhara. # Published_Date_or_Year: 2015 # Published_Title: An Arctic and Subarctic ostracode database: biogeographic and paleoceanographic applications. # Journal_Name: Hydrobiologia # Volume: 786 # Edition: # Issue: # Pages: 59-95 # Report_Number: # DOI: 10.1007/s10750-015-2587-4 # Online_Resource: https://doi.org/10.1007/s10750-015-2587-4 # Full_Citation: # Abstract: A new Arctic Ostracode Database-2015 (AOD-2015) provides census data for 96 species of benthic marine Ostracoda from 1340 modern surface sediments from the Arctic Ocean and subarctic seas. Ostracoda is a meiofaunal, Crustacea group that secretes a bivalved calcareous (CaCO3) shell commonly preserved in sediments. Arctic and subarctic ostracode species have ecological limits controlled by temperature, salinity, oxygen, sea ice, food, and other habitat-related factors. Unique species ecology, shell chemistry (Mg/Ca ratios, stable isotopes), and limited stratigraphic ranges make them a useful tool for paleoceanographic reconstructions and biostratigraphy. The database, described here, will facilitate the investigation of modern ostracode biogeography, regional community structure, and ecology. These data, when compared to downcore faunal data from sediment cores, will provide a better understanding of how the Arctic has been affected by climatic and oceanographic change during the Quaternary. Images of all species and biogeographic distribution maps for selected species are presented, with brief discussion of representative species' biogeographic and ecological significance. Publication of AOD-2015 is open-sourced and will be available online at several public websites with latitude, longitude, water depth, and bottom water temperature for most samples. It includes material from Arctic abyssal plains and submarine ridges, continental slopes, and shelves of the Kara, Laptev, East Siberian, Chukchi, Beaufort Seas, and several subarctic regions. #--------------------------------------- # Publication # Authors: Gemery, L., L.W. Cooper, C. Magen, T.M. Cronin, and J.M. Grebmeier # Published_Date_or_Year: 2021 # Published_Title: Stable oxygen isotopes in shallow marine ostracodes from the northern Bering and Chukchi Seas # Journal_Name: Marine Micropaleontology # Volume: # Edition: # Issue: # Pages: # Report_Number: # DOI: 10.1016/j.marmicro.2021.101979 # Online_Resource: # Full_Citation: # Abstract: Stable oxygen isotope measurements on calcitic valves of benthic ostracodes (δ18Oost) from the northern Bering and Chukchi Seas were used to examine ecological and hydrographic processes governing ostracode and associated seawater δ18O values. Five cryophilic taxa were analyzed for δ18Oost values: Sarsicytheridea bradii; Paracyprideis pseudopunctillata; Heterocyprideis sorbyana; Heterocyprideis fascis; and the subarctic species Normanicythere leioderma. Controls on the stable oxygen isotope composition of ostracode calcite were investigated by first establishing species’ vital effects and then comparing δ18Oost to seawater δ18O values (that ranged from -2.7 to -0.5‰), CTD temperature (-1.7 to 8.7°C) and salinity (30-34) measured at sampling stations in the Bering and Chukchi Seas during the six summers of 2013-2018. Results from 297 δ18Oost measurements from 53 sites on the Bering and Chukchi Sea continental shelves are consistent with the temporal and spatial variation in δ18O values of continental shelf bottom water, as impacted by seasonality, regional hydrography, and physical processes (i.e., sea-ice melt and extent, vertical mixing, precipitation/evaporation). Regression statistics for δ18Oost values of two species, N. leioderma and P. pseudopunctillata, showed correlations to temperature and salinity that may facilitate prediction of water-mass characteristics when applied to sediment core records. Specifically, a significant linear regression relationship was found between δ18Oost values of N. leioderma and P. pseudopunctillata and temperature (R2 = 0.67 and 0.52, respectively). A principal component analysis confirmed temperature as the main controlling factor in the δ18Oost values of all species except S. bradii, with samples of distinct water masses grouping together. The δ18Oost values of S. bradii exhibited a narrow range of values (~3 to 4.5‰) across a temperature range of 10°C. Due to strong vital effects and possibly other undetermined factors, the incorporation of δ18Oost in S. bradii was not driven by any obvious predominant environmental factors. #--------------------------------------- # Publication # Authors: Gemery, L., T.M. Cronin, L.W. Cooper, H.J. Dowsett, and J.M. Grebmeier # Published_Date_or_Year: 2021 # Published_Title: Biogeography and Ecology of Ostracoda in the U.S. northern Bering, Chukchi, and Beaufort Seas # Journal_Name: PLoS ONE # Volume: # Edition: # Issue: # Pages: # Report_Number: # DOI: # Online_Resource: # Full_Citation: # Abstract: Ostracoda (bivalved Crustacea) comprise a significant part of the benthic meiofauna in the Pacific-Arctic region, including more than 50 species, many with identifiable ecological tolerances. These species hold potential as useful indicators of past and future ecosystem changes. In this study, we examined benthic ostracodes from nearly 300 surface sediment samples, >34,000 specimens, from three regions -- the northern Bering, Chukchi and Beaufort Seas -- to establish species’ ecology and distribution. Samples were collected during various sampling programs from 1970 through 2018 on the continental shelves at 20 to ~100m water depth. Ordination analyses using species’ relative frequencies identified six species, Normanicythere leioderma, Sarsicytheridea bradii, Paracyprideis pseudopunctillata, Semicytherura complanata, Schizocythere ikeyai, and Munseyella mananensis, as having diagnostic habitat ranges in bottom water temperatures, salinities, sediment substrates and/or food sources. Species relative abundances and distributions can be used to infer past bottom environmental conditions in sediment archives for paleo-reconstructions and to characterize potential changes in Pacific-Arctic ecosystems in future sampling studies. Statistical analyses further showed ostracode assemblages grouped by the summer water masses influencing the area. Offshore-to-nearshore transects of samples across different water masses showed that complex water mass characteristics, such as bottom temperature, productivity, as well as sediment texture, influenced the relative frequencies of ostracode species over small spatial scales. On the larger biogeographic scale, synoptic ordination analyses showed dominant species-- N. leioderma (Bering Sea), P. pseudopunctillata (offshore Chukchi and Beaufort Seas), and S. bradii (all regions)—remained fairly constant over recent decades. However, during 2013-2018, northern Pacific species M. mananensis and S. ikeyai increased in abundance by small but significant proportions in the Chukchi Sea region compared to earlier years. It is yet unclear if these assemblage changes signify a meiofaunal response to changing water mass properties and if this trend will continue in the future. Our new ecological data on ostracode species and biogeography suggest these hypotheses can be tested with future benthic monitoring efforts." #--------------------------------------- # Funding_Agency # Funding_Agency_Name: USGS Land Change Science Program / Florence Bascom Geoscience Center # Grant: #--------------------------------------- # Site_Information # Site_Name: Arctic and Subarctic to 50N # Location: Arctic Ocean # Northernmost_Latitude: 89.98 # Southernmost_Latitude: 50.74 # Easternmost_Longitude: 180 # Westernmost_Longitude: -180 # Elevation: #--------------------------------------- # Data_Collection # Collection_Name: AOD2020 Temperature Source Cronin # First_Year: 1933 # Last_Year: 2018 # Time_Unit: AD # Core_Length: # Notes: Temperature Source IDs are tied to Temperature Source column in cronin2021-aod2020.txt data table. #--------------------------------------- # Chronology_Information # Chronology: #--------------------------------------- # Variables # Data variables follow that are preceded by "##" in columns one and two. # Variables list, one per line, shortname-tab-longname components (9 components: what, material, error, units, seasonality, archive, detail, method, C or N for Character or Numeric data) ## TempSourceID sample identification,,,,,paleoceanography,,,N,Other Temperature Source number tied to AOD data table CDT_Temp_Source column ## Temp_ref notes,,,,,paleoceanography,,,C,temperature reference #------------------------ # Data: # Data lines follow (have no #) # Data line format - tab-delimited text, variable short name as header # Missing_Values: NA TempSourceID Temp_ref 1 Cronin, T.M. and Dowsett, H.J. 1990. A quantitative micropaleontologic method for shallow marine paleoclimatology: Application to Pliocene deposits of the western North Atlantic Ocean. Marine Micropaleontology, 16(1/2): 117-148. 2 Prinsenberg, S.J. 1986. "Salinity and temperature distributions of Hudson Bay and James Bay" in I.P. Martini, ed., Canadian Inland Seas. Elsevier Oceanography Series, 44, Chapt. 9, 163-186. 3 Briggs, W.M., Jr. pers. comm. 4 Penney, D.N. 1989. Recent shallow marine Ostracoda of the Ikerssuak (Bredefjord) district, Southwest Greenland. Journal of Micropaleontology, 8: 55-75. 5 Prinsenberg, S.J. 1986. "On the physical oceanography of Foxe Basin" in I.P. Martini, ed., Canadian Inland Seas. Elsevier Oceanography Series, 44, Chapt. 12, 217-236. 6 Drinkwater, K.F. 1986. "Physical oceanography of Hudson Strait and Ungava Bay" in I.P. Martini, ed., Canadian Inland Seas. Elsevier Oceanography Series, 44, Chapt. 13, 237-264. 7 G. Dietrich, 1969. Atlas of the Hydrography of the Northern North Atlantic Ocean, Conseli International pur l’Exploration de la Mer Service Hydrographique, Charlottenlund Slot, Denmark, 12-13. 8 U.S. Navy Hydrographic Office, 1958. Oceanographic Atlas of the Polar Seas, Part II, Arctic. Arctic. Pub. No. 705, 149 pp. 9 Aagaard, K., Coachman, L.K. and Carmack, E. 1981. On the halocline of the Arctic Ocean. Deep-Sea Research, 28A: 529-545. 10 U.S. Naval Oceanography Command Detachment. 1981. U.S. Marine Climatic Atlas of the World, Volume IX, World-Wide Means and Standard Deviations. Washington, DC. 11 Wood, Adrian, pers. comm. 12 Vilks, G. 1989. "Ecology of Recent foraminifera on the Canadian continental shelf of the Arctic Ocean" in Y. Herman, ed., The Arctic Seas. Van Nostrand Reinhold Co., New York, Chapt. 21, 497-569. 13 Bourke, R.H., Newton, J.L., Paquette, R.G., and Tunnicliffe, M.D. 1987. Circulation and water masses of the East Greenland Shelf. Journal of Geophysical Research, 92 (C7): 6729-6740. 14 International North Pacific Fisheries Commission. 1962. Bulletin No. 13. 15 National Oceanographic and Atmospheric Administration data set 165: Beaufort Shelf off Alaska. 1959. 16 Fissel, D.B., Lemon, D.D. and Birch, J.R. 1981. The physical oceanography of western Baffin Bay and Lancaster Sound. Canadian Minister of Indian and Northern Affairs, Northern Affairs Program, Ottawa, 293 pp. 17 Coachman, L.K., Aagaard, K., and Tripp, R.B. 1975. Bering Strait: The Regional Physical Oceanography. University of Washington Press, Seattle, 172 pp. 18 Johannessen, O.M. 1986. "Brief overview of the physical oceanography" in B.G. Hurdle, ed., The Nordic Seas. Springer-Verlag, New York, Chapt. 4, 103-127. 19 Aagaard, K. 1984. "The Beaufort Undercurrent" in P.W. Barnes, D.M. Shell, E. Reimnitz, eds., The Alaskan Beaufort Sea; Ecosystems and Environments. Academic Press, New York, 47-71. 20 Hansell, D.A., Goering, J.J., Walsh, J.J., McRoy, C.P., Coachman, L.K. and Whitledge, T.E. 1989. Summer phytoplankton production and transport along the shelf break in the Bearing Sea. Continental Shelf Research, 9(12): 1085-1104. 21 Walsh, J.J., McRoy, C.P., Coachman, L.K., Goering, J.J. et al. 1989. Carbon and nitrogen cycling within the Bering/Chukchi Seas: Source regions for organic matter affecting AOU demands of the Arctic Ocean. Progress in Oceanography, 22(4): 277-359. 22 Codispoti, L.A. and Richards, F.A. 1968. Micronutrient distributions in the East Siberian and Laptev seas during summer 1963. Arctic, 21: 67-83. 23 Aagaard, K. and Coachman, L.K. 1968. The East Greenland Current north of Denmark Strait: Part II. Arctic, 21: 267-290. 24 ICES = International Council for the Exploration of the Sea: http://www.ices.dk/ocean/data/surface/surface.htm 25 USGS Coastal & Marine Geology InfoBank http://walrus.wr.usgs.gov/infobank/programs/html/main/home.html 26 A. Stepanova, E. Taldenkova, and H. A. Bauch. 2003. Recent Ostracoda from the Laptev Sea (Arctic Siberia): Species Assemblages and Some Environmental Applications. Marine Micropaleontology. 48(1–2), 23–48. 27 Berichte zur Polar- und Meeresforschung. 2001, V. 393. 28 Piechura, Jan. 2007. Physical oceanography at CTD station Oceania97_097, Institute of Oceanology of the Polish Acedemy of Sciences, doi:10.1594/PANGAEA.661874. 29 Walczowski, Waldemar. 2007. Physical oceanography at CTD station Oceania98_144, Institute of Oceanology of the Polish Acedemy of Sciences, doi:10.1594/PANGAEA.662116. 30 Swift, James. 2006. Physical oceanography at CTD station AOS94/36-1, Scripps Institution of Oceanography, doi:10.1594/PANGAEA.476075. 31 Thiede, Jörn; Gauger, Steffen. 2002. Physical oceanography from CTD station PS59/279-1a, doi:10.1594/PANGAEA.67017. 32 Thiede, Jörn. 2006. Physical oceanography during cruise ARK-IV/3 at CTD station PS11/358, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, doi:10.1594/PANGAEA.484261. (At 3979 m). 33 Swift, James. 2006. Physical oceanography at CTD station AOS94/37-1, Scripps Institution of Oceanography, doi:10.1594/PANGAEA.476077. 34 Budéus, Gereon. 2007. Physical oceanography during cruise ARK-XV/1 at CTD station PS55/067, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, doi:10.1594/PANGAEA.666506. 35 Swift, James. 2006. Hydrochemistry measured on water bottle samples at station SN97/12-1, Scripps Institution of Oceanography, doi:10.1594/PANGAEA.484605 36 Swift, James. 2006. Physical oceanography at CTD station AOS94/11-1, Scripps Institution of Oceanography, doi:10.1594/PANGAEA.476021. 37 Schnack, Klaus; Piepenburg, Dieter; Budéus, Gereon. 2005. Physical oceanography of bottom water of the east Greenland continental slope, doi:10.1594/PANGAEA.317892. 38 Budéus, Gereon. 2007. Physical oceanography during cruise ARK-XV/1 at CTD station PS55/023, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, doi:10.1594/PANGAEA.666463. 39 O'Dwyer, Jane. 2006. Physical oceanography at CTD station LA01/161, Norwegian Polar Institute, Tromso, doi:10.1594/PANGAEA.391975. 40 ESOP Members; Meincke, Jens. 2003. Physical oceanography during cruise ARK-IX/1 at CTD station PS24/056, doi:10.1594/PANGAEA.98772. 41 Malmberg, Svend-Aage. 2002. Physical oceanography at CTD station BS89/3_518, Marine Research Institute, Reykjavik / Iceland, doi:10.1594/PANGAEA.83155. 42 Fahrbach, Eberhard. 2004. Physical oceanography during cruise ARK-V/2 at CTD station PS13/054-1, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, doi:10.1594/PANGAEA.225873. (At 2860 m). 43 Fahrbach, Eberhard. 2004. Physical oceanography during cruise ARK-V/2 at CTD station PS13/090-1, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, doi:10.1594/PANGAEA.225905. 44 GSP/AOSB/ICES. 2002. Physical oceanography at CTD station Bartlett89_02-2, doi:10.1594/PANGAEA.82882. 45 Budéus, Gereon. 2003. Physical oceanography during cruise ARK-X/1 at CTD station PS31/063, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, doi:10.1594/PANGAEA.98900. 46 Thiede, Jörn. 2006. Physical oceanography during cruise ARK-IV/3 at CTD station PS11/358, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, doi:10.1594/PANGAEA.484261. 47 Rudels, Bert. 2006. Physical oceanography during cruise ODEN-91 at CTD station OD91_011-1, Finnish Institute of Marine Research, Helsinki, doi:10.1594/PANGAEA.526767. 48 Rudels, Bert. 2006. Physical oceanography during cruise ODEN-91 at CTD station OD91_032-1, Finnish Institute of Marine Research, Helsinki, doi:10.1594/PANGAEA.484223. 49 Rudels, Bert. 2006. Physical oceanography during cruise ODEN-91 at CTD station OD91_016-1, Finnish Institute of Marine Research, Helsinki, doi:10.1594/PANGAEA.526772. 50 Wisotzki, A. 2008. Physical oceanography measured on water bottle samples at station PS70/309-3, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, doi:10.1594/PANGAEA.708515. 51 Bauch, Dorothea; Anderson, Leif G. 2002. Physical oceanography measured on water bottle samples at station OD91_026-1, doi:10.1594/PANGAEA.85179. (http://doi.pangaea.de/10.1594/PANGAEA.85179?format=html). 52 Thiede, Jörn; Gauger, Steffen. 2002. Physical oceanography from CTD station PS59/280-1a, doi:10.1594/PANGAEA.67018. 53 Rudels, Bert. 2006. Physical oceanography during cruise ODEN-91 at CTD station OD91_035-1, Finnish Institute of Marine Research, Helsinki, doi:10.1594/PANGAEA.484226. 54 Rudels, Bert. 2006. Physical oceanography during cruise ODEN-91 at CTD station OD91_032-1, Finnish Institute of Marine Research, Helsinki, doi:10.1594/PANGAEA.484223. 55 Rudels, Bert. 2006. Physical oceanography during cruise ODEN-91 at CTD station OD91_036-1, Finnish Institute of Marine Research, Helsinki, doi:10.1594/PANGAEA.484227. 56 Rudels, Bert. 2006. Physical oceanography during cruise ODEN-91 at CTD station OD91_045-1, Finnish Institute of Marine Research, Helsinki, doi:10.1594/PANGAEA.484235. 57 Rudels, Bert. 2006. Physical oceanography during cruise ODEN-91 at CTD station OD91_050-1, Finnish Institute of Marine Research, Helsinki, doi:10.1594/PANGAEA.484240. (At 3630m). 58 Budéus, Gereon. 2006. Physical oceanography during cruise ARK-XVII/1 at CTD station PS59/149-1, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, doi:10.1594/PANGAEA.511889. 59 Rohardt, Gerd. 2006. Physical oceanography during cruise LA00 at CTD station LA00/12-1, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, doi:10.1594/PANGAEA.526695. 60 Schauer, Ursula; Rohardt, Gerd. 2004. Physical oceanography during cruise ARK-IX/4 at CTD station PS27/021-1, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, doi:10.1594/PANGAEA.226083. 61 Schauer, Ursula; Rohardt, Gerd. 2004. Physical oceanography during cruise ARK-IX/4 at CTD station PS27/046-1, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, doi:10.1594/PANGAEA.226107. 62 Meincke, Jens. 2004. Physical oceanography during cruise ARK-XI/1 at CTD station PS36/045-1, Institut für Meereskunde, Universität Hamburg, doi:10.1594/PANGAEA.226193. 63 Schauer, Ursula; Rohardt, Gerd. 2004. Physical oceanography during cruise ARK-IX/4 at CTD station PS27/034-1, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, doi:10.1594/PANGAEA.226096. 64 Schauer, Ursula; Rohardt, Gerd. 2004. Physical oceanography during cruise ARK-IX/4 at CTD station PS27/053-1, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, doi:10.1594/PANGAEA.226114. 65 Schauer, Ursula; Rohardt, Gerd. 2004. Physical oceanography during cruise ARK-IX/4 at CTD station PS27/056-1, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, doi:10.1594/PANGAEA.226117. 66 Unpublished expedition data from contributor. 67 Bering Sea www.eol.ucar.edu/projects/best/HLY09-01_cruise_report.pdf 68 2009 Chukchi Sea http://www.comidacab.org/docs.html 69 2013 cruise report: http://www.comidacab.org/hannashoal/docs.html 70 2012 cruise report: http://www.comidacab.org/hannashoal/docs.html 71 Impacts of Climate change on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) https://www.espo.nasa.gov/icescape/ 72 2010 Chukchi Sea http://www.comidacab.org/ 73 Western Arctic Shelf-Basin Interactions (SBI) Project 2002-2004 http://arctic.cbl.umces.edu/sbi/web-content/ 74 United States Coast Guard Oceanographic Unit. 1970. WEBSEC 70, An Ecological Survey in the Eastern Chukchi Sea. Report No. 50, CG373-50. http://walrus.wr.usgs.gov/infobank/g/g170cs/html/g-1-70-cs.meta.html 75 www. arctic.cbl.umces.edu/web-content/PSEA10-01cruisereport.pdf (Bering Sea Ecosystem Study) 76 International Council for the Exploration of the Sea or ICES - http://www.ices.dk/marine-data/data-portals/Pages/ocean.aspx 77 Use of Ocean Data View software helped identify sample water temperatures and salinities. Our thanks to Schlitzer, R. 2015. Ocean Data View, http://odv.awi.de. 78 Boyer, T.P., J. I. Antonov, O. K. Baranova, C. Coleman, H. E. Garcia, A. Grodsky, D. R. Johnson, R. A. Locarnini, A. V. Mishonov, T.D. O'Brien, C.R. Paver, J.R. Reagan, D. Seidov, I. V. Smolyar, and M. M. Zweng, 2013: World Ocean Database 2013, NOAA Atlas NESDIS 72, S. Levitus, Ed., A. Mishonov, Technical Ed.; Silver Spring, MD, 209 pp., http://doi.org/10.7289/V5NZ85MT