# Equatorial Pacific Coretop and Downcore Foraminifera Radiocarbon Data #----------------------------------------------------------------------- # World Data Service for Paleoclimatology, Boulder # and # NOAA Paleoclimatology Program # National Centers for Environmental Information (NCEI) #----------------------------------------------------------------------- # Template Version 3.0 # Encoding: UTF-8 # NOTE: Please cite Publication, and Online_Resource and date accessed when using these data. # If there is no publication information, please cite Investigators, Title, and Online_Resource and date accessed. # # Online_Resource: https://www.ncdc.noaa.gov/paleo/study/22190 # Description: # Online_Resource: https://www1.ncdc.noaa.gov/pub/data/paleo/contributions_by_author/mekik2014/mekik2014.txt # Description: # # Original_Source_URL: # Description: # # Description/Documentation lines begin with # # Data lines have no # # # Archive: Paleoceanography # # Dataset DOI: # # Parameter_Keywords: age control #-------------------- # Contribution_Date # Date: 2017-05-26 #-------------------- # File_Last_Modified_Date # Date: 2017-05-26 #-------------------- # Title # Study_Name: Equatorial Pacific Coretop and Downcore Foraminifera Radiocarbon Data #-------------------- # Investigators # Investigators: Mekik, F. #-------------------- # Description_Notes_and_Keywords # Description: Coretop and downcore foraminifera radiocarbon and d13C data from the Equatorial Pacific. # Tables 1 through 4 below include surface and downcore location information, fossil species information, # and the coretop and downcore D14C, raw radiocarbon age and d13C data. # # # Table 1: Core information for all samples used in this study. OJP = Ontong Java Plateau; # RIO = Rio Grande Rise; WEP: Western Equatorial Pacific; EEP = Eastern Equatorial Pacific # A. Core Tops # Water Depth Bottom Water # DCO3= # Region Core Latitude Longitude (m) MFI (umol/kg) # OJP ERDC 90 -0.865 157.48 1903 0.42 11.5 # OJP ERDC 121 -0.183 158.713 2245 0.33 5.17 # OJP ERDC 127 -0.003 161.418 3724 0.83 -13.24 # RIO AII 107-9 69 -31.658 -36.023 2158 0.08 42.81 # RIO AII 107-9 66 -31.945 -36.205 2716 0.22 37.59 # RIO AII107-9 132 -30.838 -38.283 3343 0.16 25.32 # RIO CHN 115-6 92 -30.428 -38.838 3934 0.24 -4.88 # RIO AII 107-9 142 -30.947 -39 4148 0.6 -14.67 # RIO AII 107-9 133 -30.85 -38.402 3454 0.28 18.41 # RIO AII 107-9 149 -30.89 -38.563 3744 0.21 -1.37 # # B. Down Core # Core Water Depth Ave. Sed. # Region/Core Depth (cm) Latitude Longitude (m) MFI Rate (cm/kyr) # OJP/ MW91-9-56 2.5 0 158 4041 0.898 1.01 # 26.5 0.73 1.82 # 38.5 0.61 1.73 # # WEP/ MD98-2177 6 1.403 119.078 968 0.25 12 # 345 0.27 55.67 # 475 50.1 # # EEP/ ME-27 0.5 -1.853 -82.787 2203 0.71 0.91 # 10.5 0.68 26.3 # 80.5 0.31 7.12 # 125.5 0.15 7.09 # # # # # Table 2: Information for fossilized organisms used in this study. (DCM = Deep Chlorophyll Maximum) # Habitat Habitat Whole D14C in core # Designation Shell Depth References for Shells Frags top or down # Organism in Text Species Type (m) Habitat Depth Dated? Dated? core sample? # Planktonic Surface Globigerinoides porous/ 0-80 Bijma, 1991 yes no core top/ # Foraminifer Dweller sacculifer fragile Spero and Lea, 1993 down core # Anand et al., 2003 # Planktonic Surface Globigerinoides porous/ 0-50 Anand et al., 2003 yes no core top # Foraminifer Dweller ruber fragile Sadekov et al., 2009 # Planktonic Deep Globorotalia sturdy 75 Be et al., 1960 yes yes core top/ # Foraminifer Dweller menardii # Thermocline Farmer et al., 2007 down core # Planktonic Deep Globorotalia sturdy 200-500 Anand et al., 2003 yes no core top # Foraminifer Dweller truncatulinoides # Thermocline # Planktonic Deep Pulleniatina sturdy 50-125 Anand et al., 2003 yes yes core top/ # Foraminifer Dweller obliquiloculata Sadekov et al., 2009 down core # Thermocline Farmer et al., 2007 # Planktonic Deep Neogloboquadrina sturdy 50-100 Anand et al., 2003 yes no core top/ # Foraminifer Dweller dutertrei (DCM) Fairbanks et al. 1982 down core # Thermocline Fairbanks and Wiebe, 1980 # Loubere et al., 2001 # Pteropod Deep variable --- 50-650 Jasper and Deuser 1993 no yes core top/ # Dweller Juranek et al., 2003 down core # # # # # Table 3: Core top D14C, raw radiocarbon age and d13C data. # A. G. sacculifer G. ruber G. menardii G. trunc P. obliqui. Pteropod G. menardii P. obliqui. # D14C (per mil) whole shells whole shells whole shells whole shells whole shells fragments fragments fragments # Core # ERDC 90 -410.3 ± 1.81 -378.7 ± 1.4 -426.7 ± 1.12 # ERDC 121 -365.4 ± 1.5 -198.1 ± 0.64 -395 ± 1.76 -449.5 ± 1.96 -444.7 ± 1.68 # ERDC 127 -381 ± 3.08 -440.9 ± 1.73 -390.3 ± 2.11 -412.2 ± 1.89 # AII 107-9 69 -348.5 ± 2.19 -371.7 ± 2.07 -468.6 ± 1.85 # AII 107-9 66 -443.9 ± 2.31 -452.1 ± 1.98 -407.9 ± 1.93 -509.9 ± 3.43 -475.7 ± 2.81 # AII107-9 132 -568.4 ± 3.42 -451.1 ± 1.56 -386.2 ± 1.38 -536.5 ± 3.13 # CHN 115-6 92 -551.9 ± 2.71 -510 ± 1.77 -422.8 ± 1.47 -621.5 ± 3.78 # AII 107-9 142 -598.4 ± 3.28 -618.6 ± 4.87 -518.9 ± 3.24 # AII 107-9 133 -875.9 ± 7.76 -892 ± 8.26 -874.8 ± 6.29 -932.4 ± 13.79 # AII 107-9 149 -900 ± 12.6 -908.3 ± 7.92 -905.4 ± 7.66 -933.8 ± 9.87 # # B. G. sacculifer G. ruber G. menardii G. trunc P. obliqui. Pteropod G. menardii P. obliqui. # Raw Radiocarbon Age whole shells whole shells whole shells whole shells whole shells fragments fragments fragments # Core # ERDC 90 4240 ± 35 3820 ± 30 4470 ± 20 # ERDC 121 3650 ± 35 1770 ± 25 4040 ± 35 4800 ± 35 4720 ± 30 # ERDC 127 4670 ± 30 3970 ± 45 4270 ± 35 # AII 107-9 69 3440 ± 50 3730 ± 45 5080 ± 30 # AII 107-9 66 4710 ± 40 4830 ± 35 4210 ± 35 5730 ± 55 5190 ± 45 # AII107-9 132 6750 ± 50 4820 ± 25 3920 ± 30 6180 ± 45 # CHN 115-6 92 6450 ± 40 5730 ± 30 4410 ± 25 7800 ± 50 # AII 107-9 142 7330 ± 45 7740 ± 60 5880 ± 50 # AII 107-9 133 16750 ± 70 17900 ± 75 16700 ± 60 21600 ± 120 # AII 107-9 149 18500 ± 110 19200 ± 70 18950 ± 70 21800 ± 85 # # C. G. sacculifer G. ruber G. menardii G. trunc P. obliqui. Pteropod G. menardii P. obliqui. # d13C (per mil) whole shells whole shells whole shells whole shells whole shells fragments fragments fragments # Core # ERDC 90 1.94 1.75 1.15 # ERDC 121 1.88 1.62 1.18 1.3 1.03 # ERDC 127 1.17 1.94 1.38 # AII 107-9 69 0.75 1.35 2.2 # AII 107-9 66 1.29 1.61 1.47 1.74 0.81 # AII107-9 132 1.08 1.64 1.39 0.51 # CHN 115-6 92 1.06 1.49 1.55 1.59 # AII 107-9 142 1.41 0.71 1.26 # AII 107-9 133 0.94 1.18 1.02 1.13 # AII 107-9 149 0.85 1.36 1.01 1.39 # # # # # # Table 4: Down core D14C, raw radiocarbon age and d13C data. # A. Core G. sacculifer N. dutertrei Pteropod G. menardii P. obliqui. G. menardii P. obiqui # D14C (per mil) Depth whole shells whole shells fragments whole shells whole shells fragments fragments # Core (cm) # MW91-9 56 2.5 -340.4 ± 1.55 -475.4 ± 2.08 -505.1 ± 1.55 -446.6 ± 2.82 # MW91-9 56 26.5 -803.8 ± 10.65 -845.4 ± 5.47 -819.7 ± 5 -866.8 ± 7.16 -840.5 ± 10.01 # MW91-9 56 38.5 -926.7 ± 7.59 -926.2 ± 8.79 -932.6 ± 12.45 -935 ± 17.26 # # MD98-2177 6 -66.2 ± 0.38 -86.5 ± 0.35 # MD98-2177 345 -648.1 ±3.68 -668.3 ± 5.04 -628.5 ± 3.05 -656.9 ±4.02 -657.8 ± 6.92 # MD98-2177 475 -737.3 ± 6.17 -760.7 ± 3.81 -739.6 ± 4.26 -738 ± 6.76 -733.8 ± 6.62 # # ME-27 0.5 -249 ± 1.06 -319.6 ± 3.24 # ME-27 10.5 -321.2 ± 1.85 -376 ± 3.19 # ME-27 80.5 -781.4 ± 5.36 -783.7 ± 9.78 -795.9 ± 7.02 # ME-27 125.5 -885.2 ± 7.71 -882.2 ± 11.23 # # B. Core G. sacculifer N. dutertrei Pteropod G. menardii P. obliqui. G. menardii P. obiqui # Raw Radiocarbon Age Depth whole shells whole shells fragments whole shells whole shells fragments fragments # Core (cm) # MW91-9 56 2.5 3340 ± 35 5180 ± 35 5650 ± 35 4750 ± 50 # MW91-9 56 26.5 13100 ± 100 15000 ± 55 13750 ± 45 16200 ± 65 14750 ± 95 # MW91-9 56 38.5 21000 ± 70 20900 ± 70 21700 ± 100 22000 ± 150 # # MD98-2177 6 550 ± 45 725 ± 30 # MD98-2177 345 8390 ± 45 8860 ± 60 7950 ± 40 8590 ± 50 8610 ± 85 # MD98-2177 475 10750 ± 70 11500 ± 40 10800 ± 45 10750 ± 70 10650 ± 75 # # ME-27 0.5 2300 ± 35 # ME-27 10.5 3790 ± 70 # ME-27 80.5 12200 ± 55 12300 ± 100 12750 ± 70 # ME-27 125.5 17400 ± 70 17200 ± 100 # # C. Core G. sacculifer N. dutertrei Pteropod G. menardii P. obliqui. G. menardii P. obiqui # d13C (per mil) Depth whole shells whole shells fragments whole shells whole shells fragments fragments # Core (cm) # MW91-9 56 2.5 1.86 1.23 1 1 # MW91-9 56 26.5 1.5 1.78 1.15 1.99 -0.18 # MW91-9 56 38.5 1.99 1.43 2.1 1.28 # # MD98-2177 6 1.8 1.45 # MD98-2177 345 1.61 0.4 1.11 0.35 0.5 # MD98-2177 475 1.51 0.16 1.24 0.05 0.72 # # ME-27 0.5 1.32 # ME-27 10.5 1.03 # ME-27 80.5 1.05 0.87 0.5 # ME-27 125.5 1.42 1.63 # #-------------------- # Publication # Authors: Figen Mekik # Published_Date_or_Year: 2014-01-15 # Published_Title: Radiocarbon dating of planktonic foraminifer shells: A cautionary tale # Journal_Name: Paleoceanography # Volume: 29 # Edition: # Issue: 1 # Pages: 13-29 # Report_Number: # DOI: 10.1002/2013PA002532 # Online_Resource: http://onlinelibrary.wiley.com/doi/10.1002/2013PA002532/full # Full_Citation: # Abstract: Sedimentation rate, bioturbation, winnowing, and calcite dissolution produce significant radiocarbon age offsets among multiple species of coexisting planktonic foraminifers and pteropod fragments. We compare the radiocarbon age of foraminifer species and pteropod fragments with estimates of percent calcite dissolved made with a sedimentary proxy (Globorotalia menardii fragmentation index-MFI) to delineate the effect of dissolution on radiocarbon age of foraminifers. Data from two core top transects on the Rio Grande Rise (RIO) and Ontong Java Plateau (OJP) and from down core sediments of varying sedimentation rates in the tropical Pacific (ME-27, MD98 2177, and MW91-9 56GGC) reveal that sediments with the greatest accumulation rates produce the least age offsets among coexisting species. Age offsets among coexisting foraminifers are about 3500 years on RIO, and 1000 years on OJP. Two core tops from RIO yield an age of the Last Glacial Maximum possibly due to mass displacement of younger sediments downslope. Foraminifer age increases with increasing dissolution and there is a consistent pattern of older foraminifer fragments coexisting with younger whole shells of the same species. The only exception is sediments which have experienced high dissolution where fragments are younger than whole shells. The age offset between fragments of G. menardii and its coexisting whole shells does not exceed the age offset among other coexisting foraminifer species in the same core tops. #------------------ # Funding_Agency # Funding_Agency_Name: US National Science Foundation # Grant: OCE0825280, OCE1219739 #------------------ # Site_Information # Site_Name: Equatorial Pacific # Location: Ocean>Pacific Ocean # Country: # Northernmost_Latitude: 1.5 # Southernmost_Latitude: -31.0 # Easternmost_Longitude: 162.0 # Westernmost_Longitude: -83.0 # Elevation: #------------------ # Data_Collection # Collection_Name: Mekik2014 # Earliest_Year: 22000 # Most_Recent_Year: 0 # Time_Unit: Cal. Year BP # Core_Length: # Notes: #------------------ # Chronology_Information # Chronology: # #---------------- # Variables # # Data variables follow are preceded by "##" in columns one and two. # Data line variables format: one per line, shortname-tab-variable components (what, material, error, units, seasonality, data type,detail, method, C or N for Character or Numeric data, free text) # # #---------------- # Data: # Data lines follow (have no #) # Data line format - tab-delimited text, variable short name as header # Missing Values: # # Data and information tables are included in the Description_Notes_and_Keywords section above #