# Foraminiferal Shell Weight and Measurement Data from the Gulf Alaska over the past 20,000 years #----------------------------------------------------------------------- # World Data Service for Paleoclimatology, Boulder # and # NOAA Paleoclimatology Program #----------------------------------------------------------------------- # Template Version 4.0 # Encoding: UTF-8 # NOTE: Please cite original publication, NOAA Landing Page URL, dataset and publication DOIs (where available), and date accessed when using downloaded data. # If there is no publication information, please cite investigator, study title, NOAA Landing Page URL, and date accessed. # # Description/Documentation lines begin with '#' followed by a space # Data lines have no '#' # # NOAA_Landing_Page: https://www.ncdc.noaa.gov/paleo/study/35033 # Landing_Page_Description: NOAA Landing Page of this file's parent study, which includes all study metadata. # # Study_Level_JSON_Metadata: https://www.ncei.noaa.gov/pub/data/metadata/published/paleo/json/noaa-ocean-35033.json # Study_Level_JSON_Description: JSON metadata of this data file's parent study, which includes all study metadata. # # Data_Type: Paleoceanography # # Dataset_DOI: https://doi.org/10.5061/dryad.b8gtht7c3 # # Science_Keywords: #--------------------------------------- # Resource_Links # # Data_Download_Resource: https://www.ncei.noaa.gov/pub/data/paleo/contributions_by_author/payne2021/payne2021_CT.txt # Data_Download_Description: NOAA Template File; CT Scan Data # #--------------------------------------- # Contribution_Date # Date: 2021-12-10 #--------------------------------------- # File_Last_Modified_Date # Date: 2021-12-10 #--------------------------------------- # Title # Study_Name: Foraminiferal Shell Weight and Measurement Data from the Gulf Alaska over the past 20,000 years #--------------------------------------- # Investigators # Investigators: Payne, Calie; Belanger, Christina #--------------------------------------- # Description_Notes_and_Keywords # Description: Data was generated from 4 sites: IODP_U1419, IODP_U1418, EW0408-85JC, EW0408-87JC. Data are archived DRYAD at https://doi.org/10.5061/dryad.b8gtht7c3. CT images are archived at https://www.morphosource.org/projects/000346774. # Provided Keywords: benthic foraminifera, planktonic foraminifera, dissolution, computed tomography, shell volume #--------------------------------------- # Publication # Authors: Calie R. Payne, Christina L. Belanger # Published_Date_or_Year: 2021 # Published_Title: Enhanced carbonate dissolution associated with deglacial dysoxic events in the subpolar North Pacific # Journal_Name: Paleoceanography and Paleoclimatology # Volume: 36 # Edition: # Issue: 4 # Pages: # Report_Number: e2020PA004206 # DOI: 10.1029/2020PA004206 # Online_Resource: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020PA004206 # Full_Citation: # Abstract: Here we use volume density (?V) measurements as a metric of size-normalized weights for Neogloboquadrina pachyderma, a planktonic foraminifer, from upper OMZ and abyssal depth sites in the Gulf of Alaska over the past ~20,000 years to test for covariation between carbonate preservation and OMZ intensity. We find that dissolution of N. pachyderma is most intense at the upper OMZ site where oxygenation is generally lower than at the abyssal site. We also examine Uvigerina peregrina, a benthic foraminifer, at the upper OMZ site and find that the lowest ?V measurements in both taxa occur during deglacial and early Holocene dysoxic events. We use computed tomography images to confirm that changes in ?V are related to shell thickness, observe dissolution features, and test for growth influences on ?V. Further, we use stepwise selection of multiple regression models in which co-registered environmental proxies are potential predictors of ?V and find that the best supported models retain negative associations between ?V and the concentration of redox sensitive metals and the relative abundance of dysoxia-tolerant and opportunistic benthic foraminifera, indicating that low ?V is associated with low-oxygen conditions and pulsed availability of organic matter at the seafloor. Taken together, our results suggest the primary driver of carbonate dissolution here is related to organic carbon respiration at the seafloor. This highlights the importance of metabolic dissolution in understanding the inorganic carbon cycle and the role regions with high organic carbon export, such as OMZs, can have as CO2 sources as metabolic dissolution intensifies. #--------------------------------------- # Funding_Agency # Funding_Agency_Name: National Science Foundation # Grant: 1502746 #--------------------------------------- # Funding_Agency # Funding_Agency_Name: National Science Foundation # Grant: 1801511 #--------------------------------------- # Site_Information # Site_Name: IODP_U1419, IODP_U1418, EW0408-85JC, EW0408-87JC # Location: Gulf of Alaska # Northernmost_Latitude: 59.55 # Southernmost_Latitude: 58.8 # Easternmost_Longitude: -144.13 # Westernmost_Longitude: -144.5 # Elevation_m: #--------------------------------------- # Data_Collection # Collection_Name: CTScan_belanger2021 # First_Year: 20405 # Last_Year: 5784 # Time_Unit: cal yr BP # Core_Length_m: # Parameter_Keywords: # Notes: Data from IODP_U1419, IODP_U1418, EW0408-87JC #--------------------------------------- # Chronology_Information # Chronology: # Chronology from Walczak et al., 2020; https://science.sciencemag.org/cgi/doi/10.1126/science.aba7096 and Du et al., 2018; https://doi.org/10.1038/s41561-018-0205-6 #--------------------------------------- # Variables # PaST_Thesaurus_Download_Resource: https://www.ncdc.noaa.gov/paleo/skos/past-thesaurus.rdf # PaST_Thesaurus_Download_Description: Paleoenvironmental Standard Terms (PaST) Thesaurus terms, definitions, and relationships in SKOS format. # # Data variables follow that are preceded by "##" in columns one and two. # Variables list, one per line, shortname-tab-var components: what, material, error, units, seasonality, data type, detail, method, C or N for Character or Numeric data) # ## sampleID sample identification,,,,,Paleoceanography,,,C,Notation:Site-Hole-Core-Interval in centimeters-individual foram ID ## depth depth,,,meter,,Paleoceanography,,,N,ccsf_b ## age age,,,calendar year before present,,Paleoceanography,,,N, ## species identified foraminifer,foraminifer,,,,Paleoceanography,,,C, ## min_thick sample thickness,foraminifer,,micrometer,,Paleoceanography,,micro computed tomography,N,minimum shell thickness ## med_thick sample thickness,foraminifer,,micrometer,,Paleoceanography,,micro computed tomography,N,median shell thickness ## Q1_thick sample thickness,foraminifer,percentile,micrometer,,Paleoceanography,,micro computed tomography,N,first quartile or 25th percentile of shell thickness ## Q3_thick sample thickness,foraminifer,percentile,micrometer,,Paleoceanography,,micro computed tomography,N,third quartile or 75th perecentile of shell thickness ## mean_thick sample thickness,foraminifer,,micrometer,,Paleoceanography,,micro computed tomography,N,mean shell thickness ## total_vol volume,foraminifer,,cubic micrometer,,Paleoceanography,,micro computed tomography,N,total volume occupied by shell ## carb_vol volume,foraminifer,,cubic micrometer,,Paleoceanography,,micro computed tomography,N,volume of shell carbonate ## CT_properties notes,,,,,Paleoceanography,,micro computed tomography,C,details of the CT scanning procedure #------------------------ # Data: # Data lines follow (have no #) # Data line format - tab-delimited text, variable short name as header # Missing_Values: NA sampleID depth age species min_thick med_thick Q1_thick Q3_thick mean_thick total_vol carb_vol CT_properties U1419B 1H 3 135-138A 3.715105 7829.037285 N. pachyderma 4.32 18.58 15.27 20.03 17.46 3940000 1790000 Zeiss Versa 620, 20X objective, 120kV, 15W, 3s acquisition time, voxel= 1.08um U1419B 1H 3 135-138B 3.715105 7829.037285 N. pachyderma 4.32 11.01 8.082 13.66 11.05 2680000 988000 Zeiss Versa 620, 20X objective, 120kV, 15W, 3s acquisition time, voxel= 1.08um U1419B 1H 3 135-138C 3.715105 7829.037285 N. pachyderma 4.32 17.01 13.32 18.71 15.97 2910000 1350000 Zeiss Versa 620, 20X objective, 120kV, 15W, 3s acquisition time, voxel= 1.08um U1419B 1H 4 46-48A 4.249499 9259.64577 N. pachyderma 4.32 23.06 20.38 26.63 21.9 1770000 1220000 Zeiss Versa 620, 20X objective, 120kV, 15W, 3s acquisition time, voxel= 1.08um U1419B 1H 4 46-48B 4.249499 9259.64577 N. pachyderma 4.32 18.95 16.16 21.71 18.79 2140000 1220000 Zeiss Versa 620, 20X objective, 120kV, 15W, 3s acquisition time, voxel= 1.08um U1419B 1H 4 46-48C 4.249499 9259.64577 N. pachyderma 4.32 20.38 17.01 23.86 19.8 2730000 1590000 Zeiss Versa 620, 20X objective, 120kV, 15W, 3s acquisition time, voxel= 1.08um U1419B 1H 4 46-48D 4.249499 9259.64577 N. pachyderma 4.32 20.94 17.94 23.36 20.1 3510000 1820000 Zeiss Versa 620, 20X objective, 120kV, 15W, 3s acquisition time, voxel= 1.08um U1419B 1H 5 4-6B 5.172932 14012.2767 N. pachyderma 4.32 15.87 13.14 18.71 15.77 2390000 1090000 Zeiss Versa 620, 20X objective, 120kV, 15W, 3s acquisition time, voxel= 1.08um U1419B 1H 5 4-6D 5.172932 14012.2767 N. pachyderma 4.32 13.32 11.63 15.27 13.37 3170000 1170000 Zeiss Versa 620, 20X objective, 120kV, 15W, 3s acquisition time, voxel= 1.08um U1419B 1H 5 18-20A 5.292636 14277.95355 N. pachyderma 4.48 14.86 11.64 18.06 14.76 3480000 1150000 Xradia MicroXCT 400, 20X objective, 120kV, 10W, 5s acquisition time, voxel= 1.12um U1419B 1H 5 18-20B 5.292636 14277.95355 N. pachyderma 4.48 15.68 13.44 18.06 15.96 2900000 1080000 Xradia MicroXCT 400, 20X objective, 120kV, 10W, 5s acquisition time, voxel= 1.12um U1419B 1H 5 36-38A 5.446541 15126.82537 N. pachyderma 4.48 24.13 18.34 28.07 22.55 3120000 1840000 Xradia MicroXCT 400, 20X objective, 120kV, 10W, 5s acquisition time, voxel= 1.12um U1419B 1H 5 36-38B 5.446541 15126.82537 N. pachyderma 4.48 25.04 18.74 31.68 24.62 4110000 2620000 Xradia MicroXCT 400, 20X objective, 120kV, 10W, 5s acquisition time, voxel= 1.12um U1419B 1H 5 36-38C 5.446541 15126.82537 N. pachyderma 4.48 26.12 18.2 34.19 26.08 6390000 3740000 Xradia MicroXCT 400, 20X objective, 120kV, 10W, 5s acquisition time, voxel= 1.12um EW0408 87JC 397-399A 2.791 15698.3 N. pachyderma 4.48 20.53 16.76 24.23 18.52 7120000 3370000 Xradia MicroXCT 400, 20X objective, 120kV, 10W, 5s acquisition time, voxel= 1.12um EW0408 87JC 397-399B 2.791 15698.3 N. pachyderma 4.48 18.47 15.03 22.51 18.41 4650000 3210000 Xradia MicroXCT 400, 20X objective, 120kV, 10W, 5s acquisition time, voxel= 1.12um EW0408 87JC 397-399C 2.791 15698.3 N. pachyderma 4.48 13.25 10.02 15.84 14.26 6910000 1980000 Xradia MicroXCT 400, 20X objective, 120kV, 10W, 5s acquisition time, voxel= 1.12um U1418C 2H 5 16-20A 14.22071 17614.07065 N. pachyderma 4.32 20.65 18.06 23.92 20.55 1630000 1080000 Zeiss Versa 620, 20X objective, 120kV, 10W, 5s acquisition time, voxel= 1.12um U1418C 2H 5 16-20B 14.22071 17614.07065 N. pachyderma 4.32 18.2 15.68 20.77 18.33 2830000 1640000 Zeiss Versa 620, 20X objective, 120kV, 10W, 5s acquisition time, voxel= 1.12um U1418C 2H 5 16-20C 14.22071 17614.07065 N. pachyderma 4.32 18.06 15.68 20.16 18.88 2680000 1460000 Zeiss Versa 620, 20X objective, 120kV, 10W, 5s acquisition time, voxel= 1.12um U1419B 1H 3 135-138A 3.715105 7829.037285 U. peregrina 4.32 18.07 15.27 22.13 18.66 10830000 4760000 Zeiss Versa 620, 20X objective, 120kV, 15W, 3s acquisition time, voxel= 1.08um U1419B 1H 3 135-138B 3.715105 7829.037285 U. peregrina 4.32 21.71 17.41 25.28 21.23 13600000 6720000 Zeiss Versa 620, 20X objective, 120kV, 15W, 3s acquisition time, voxel= 1.08um U1419B 1H 4 46-48A 4.249499 9259.64577 U. peregrina 4.48 29.21 24.23 33.75 28.24 39400000 22300000 Xradia MicroXCT 400, 20X objective, 120kV, 10W, 7s acquisition time, voxel= 1.12um U1419B 1H 4 46-48B 4.249499 9259.64577 U. peregrina 4.48 21.6 16.46 26.12 21.49 5780000 3310000 Xradia MicroXCT 400, 20X objective, 120kV, 10W, 7s acquisition time, voxel= 1.12um U1419B 1H 4 46-48D 4.249499 9259.64577 U. peregrina 4.48 26.12 22.18 30.47 26.3 23100000 12900000 Xradia MicroXCT 400, 20X objective, 120kV, 10W, 7s acquisition time, voxel= 1.12um U1419B 1H 5 4-6A 5.172932 14012.2767 U. peregrina 4.32 13.32 10.8 15.87 13.44 35600000 8270000 Zeiss Versa 620, 20X objective, 120kV, 15W, 3s acquisition time, voxel= 1.08um U1419B 1H 5 4-6B 5.172932 14012.2767 U. peregrina 4.32 15.27 12.41 18.58 15.64 32000000 9280000 Zeiss Versa 620, 20X objective, 120kV, 15W, 3s acquisition time, voxel= 1.08um U1419B 1H 5 4-6C 5.172932 14012.2767 U. peregrina 4.32 14.49 12.22 16.87 14.61 47800000 11900000 Zeiss Versa 620, 20X objective, 120kV, 15W, 3s acquisition time, voxel= 1.08um U1419B 1H 5 4-6D 5.172932 14012.2767 U. peregrina 4.32 13.83 11.63 16.45 14.07 35000000 8930000 Zeiss Versa 620, 20X objective, 120kV, 15W, 3s acquisition time, voxel= 1.08um U1419B 1H 5 36-38B 5.446541 15126.82537 U. peregrina 4.48 15.2 12.68 18.07 15.43 9990000 3840000 Xradia MicroXCT 400, 20X objective, 120kV, 10W, 5s acquisition time, voxel= 1.12um U1419B 1H 5 36-38C 5.446541 15126.82537 U. peregrina 4.48 17.92 15.19 20.16 17.7 16000000 6830000 Xradia MicroXCT 400, 20X objective, 120kV, 10W, 5s acquisition time, voxel= 1.12um U1419B 1H 5 36-38D 5.446541 15126.82537 U. peregrina 4.48 15.84 13.44 18.61 13.57 8630000 3030000 Xradia MicroXCT 400, 20X objective, 120kV, 10W, 5s acquisition time, voxel= 1.12um