# Northern Gulf of Mexico Geochemistry, Lithology and Radiogenic Isotope Data over the last 3 Ma #----------------------------------------------------------------------- # World Data Service for Paleoclimatology, Boulder # and # NOAA Paleoclimatology Program #----------------------------------------------------------------------- # Template Version 3.0 # Encoding: UTF-8 # NOTE: Please cite original publication, online resource and date accessed when using this data. # If there is no publication information, please cite Investigator, title, online resource and date accessed. # # Description/Documentation lines begin with # # Data lines have no # # # Online_Resource: https://www.ncdc.noaa.gov/paleo/study/30492 # Description: NOAA Landing Page # Online_Resource: https://www.ncei.noaa.gov/pub/data/paleo/contributions_by_author/portier2020/portier2020-odp625b.txt # Description: NOAA template; ODP 625B Geochemistry, Lithology, and Radiogenic Isotope Data # # Data_Type: Paleoceanography # # Dataset_DOI: # # Parameter_Keywords: geochemistry, lithology, radiogenic isotopes #--------------------------------------- # Contribution_Date # Date: 2021-04-26 #--------------------------------------- # File_Last_Modified_Date # Date: 2021-04-26 #--------------------------------------- # Title # Study_Name: Northern Gulf of Mexico Geochemistry, Lithology and Radiogenic Isotope Data over the last 3 Ma #--------------------------------------- # Investigators # Investigators: Portier, Andrea M.; Thierens, Mieke; Martin, Ellen E.; Hemming, Sidney R.; Gombiner, Joel H.; Raymo, Maureen E. #--------------------------------------- # Description_Notes_and_Keywords # Description: Grain size distribution, clay mineralogy, CIA*, K/Ar ages and Nd-Sr-Pb isotope geochemistry of Pleistocene clay detrital fractions (<2 um) from ODP Site 625 in northeastern Gulf of Mexico. Updated data table and publication metadata submitted 26-Apr-2021. # Provided Keywords: Mid-Pleistocene Transition, Laurentide Ice Sheet, Regolith Hypothesis, Mississippi Drainage Basin, Canadian Shield #--------------------------------------- # Publication # Authors: Portier, Andrea M.; Thierens, Mieke; Martin, Ellen E.; Hemming, Sidney R.; Gombiner, Joel H.; Raymo, Maureen E. # Published_Date_or_Year: 2021 # Published_Title: Late Pleistocene Emergence of Crystalline Canadian Shield Sources in Sediments of the Northern Gulf of Mexico # Journal_Name: Paleoceanography and Paleoclimatology # Volume: 36 # Edition: # Issue: # Pages: # Report_Number: e2020PA004082 # DOI: 10.1029/2020PA004082 # Online_Resource: # Full_Citation: # Abstract: The regolith hypothesis attributes the inferred growth of a thicker and more voluminous Laurentide Ice Sheet (LIS) across the mid-Pleistocene transition (MPT) to the removal of softer subglacial substrates of either regolith or sedimentary cover and subsequent exposure of crystalline bedrock with higher basal friction at the base of the LIS. This hypothesis predicts that sediment derived from the LIS was dominated by weathered sources prior to the MPT and then transitioned to fresh Canadian Shield sources during and after the MPT. Here, we present clay mineralogy, modified indices of chemical alteration, K/Ar ages and radiogenic isotopes (Sr, Nd, Pb) of Pleistocene clay detrital fractions from ODP Site 625 in northeastern Gulf of Mexico to evaluate changes on glacial-interglacial and longer‐term timescales in sediment composition during the Pleistocene and test this prediction. Mineralogical and geochemical proxies show a predominance of chemically weathered clays (kaolinite and smectite with clay ratios ≥3.0) sourced from the Appalachians as determined by radiogenic isotopes and K/Ar ages throughout the site's three million‐year sediment record. This is consistent with extensive pre‐Pleistocene weathering of Caledonian‐Appalachian (∼450 Ma) material that covered North American cratonic sources within the Mississippi drainage basin. However, following the MPT, we observe a unique addition of physically‐weathered clays (chlorite and illite with clay ratios <3.0) with radiogenic isotopes and K/Ar ages indicating contributions from more ancient geological sources, most simply explained as sediment derived from physical erosion from the crystalline Canadian Shield. These observations are generally consistent with predictions made by the regolith hypothesis. #--------------------------------------- # Funding_Agency # Funding_Agency_Name: # Grant: #--------------------------------------- # Site_Information # Site_Name: ODP 625B # Location: Gulf of Mexico # Northernmost_Latitude: 28.831667 # Southernmost_Latitude: 28.831667 # Easternmost_Longitude: -87.16 # Westernmost_Longitude: -87.16 # Elevation: -889 #--------------------------------------- # Data_Collection # Collection_Name: ODP625B Portier2020 # First_Year: 2809360 # Last_Year: 8070 # Time_Unit: cal yr BP # Core_Length: 131.22 # Notes: In data table, 0.00 is below detection limit #--------------------------------------- # Chronology_Information # Chronology: #--------------------------------------- # Variables # Data variables follow that are preceded by "##" in columns one and two. # Variables list, one per line, shortname-tab-longname components (9 components: what, material, error, units, seasonality, archive, detail, method, C or N for Character or Numeric data) ## Sample_ID sample identification,,,,,Paleoceanography,,,C,Site-core-section-depth interval (cm); ODP Naming System ## Depth_m depth,,,meter,,Paleoceanography,,,N,cumulative depth; meters below sea floor ## Age_ka age,,,calendar kiloyear before present,,Paleoceanography,,,N,estimated age ## MIS_Stage notes,,,,,Paleoceanography,,,C,Marine Isotope Stage (MIS); As determined by Lisiecki and Raymo (2005) doi:10.1029/2004PA001071. ## G_IG notes,,,,,Paleoceanography,,,C,assigned glacial (G), interglacial (IG), and transitional (T) interval as determined by Lisiecki and Raymo (2005) doi:10.1029/2004PA001071 ## carbonate% carbonate,sediment,,weight percent,,Paleoceanography,,,N,UIC CM5012 CO2 Coulometer with an Automate-FX acidification module and sample carousel at Lamont-Doherty Earth Observatory (LDEO) ## clay% clay,sediment,,weight percent,,Paleoceanography,,,N,Malvern Mastersizer 2000 laser-granulometer (size range: 0.02 to 2000um) with Autosampler and Hydro G dispersion unit at the National Oceanography Centre Southampton (NOCS, UK);NOCS Malvern Mastersizer 2000 measurements have a modal grain-size precision of ± 4% (1s) ## silt% silt,sediment,,weight percent,,Paleoceanography,,,N,Malvern Mastersizer 2000 laser-granulometer (size range: 0.02 to 2000um) with Autosampler and Hydro G dispersion unit at the National Oceanography Centre Southampton (NOCS, UK);NOCS Malvern Mastersizer 2000 measurements have a modal grain-size precision of ± 4% (1s) ## sand% sand,sediment,,weight percent,,Paleoceanography,,,N,Malvern Mastersizer 2000 laser-granulometer (size range: 0.02 to 2000um) with Autosampler and Hydro G dispersion unit at the National Oceanography Centre Southampton (NOCS, UK);NOCS Malvern Mastersizer 2000 measurements have a modal grain-size precision of ± 4% (1s) ## mean grain size mean,sediment,,micrometer,,Paleoceanography,,,N,Particle Size Analysis (PSA) of grain size mode at the National Oceanography Centre Southampton (NOCS, UK) ## mode grain size mode,sediment,,micrometer,,Paleoceanography,,,N,Particle Size Analysis (PSA) of grain size mode at the National Oceanography Centre Southampton (NOCS, UK) ## sorting grain size class,sediment,,degree,,Paleoceanography,,,N,Degree of distribution of grain-size distribution (phi) ## kaolinite% kaolinite,sediment,,percent,,Paleoceanography,,x-ray diffraction,N,carbonate- and organic matter-free clay; x-ray diffraction (XRD) using a Philips X'pert diffractometer at Lamont-Doherty Earth Observatory (LDEO) ## smectite% smectite,sediment,,percent,,Paleoceanography,,x-ray diffraction,N,carbonate- and organic matter-free clay; x-ray diffraction (XRD) using a Philips X'pert diffractometer at Lamont-Doherty Earth Observatory (LDEO) ## illite% illite,sediment,,percent,,Paleoceanography,,x-ray diffraction,N,carbonate- and organic matter-free clay; x-ray diffraction (XRD) using a Philips X'pert diffractometer at Lamont-Doherty Earth Observatory (LDEO) ## chlorite% chlorite,sediment,,percent,,Paleoceanography,,x-ray diffraction,N,carbonate- and organic matter-free clay; x-ray diffraction (XRD) using a Philips X'pert diffractometer at Lamont-Doherty Earth Observatory (LDEO) ## clay_ratio notes,sediment,,,,Paleoceanography,,x-ray diffraction,N,carbonate- and organic matter-free clay ## plagioclase_feldspar plagioclase feldspar series,sediment,,,,Paleoceanography,,x-ray diffraction,C,plagioclase feldspar mineral presence (*if present); carbonate- and organic matter-free clay; presence of plagioclase feldspar minerals was assessed qualitatively as the absence/presence of diffraction peaks around 28° 2 Phi (0.318 nm lattice spacing) ## Al aluminum,sediment,,weight percent,,Paleoceanography,,inductively-coupled plasma mass spectrometry,N,carbonate- and organic matter-free clay; analysis at Stony Brook University ## Na sodium,sediment,,weight percent,,Paleoceanography,,inductively-coupled plasma mass spectrometry,N,carbonate- and organic matter-free clay; analysis at Stony Brook University ## Ca calcium,sediment,,weight percent,,Paleoceanography,,inductively-coupled plasma mass spectrometry,N,carbonate- and organic matter-free clay; analysis at Stony Brook University ## K potassium,sediment,,weight percent,,Paleoceanography,,inductively-coupled plasma mass spectrometry,N,carbonate- and organic matter-free clay; analysis at Stony Brook University ## Mg magnesium,sediment,,weight percent,,Paleoceanography,,inductively-coupled plasma mass spectrometry,N,carbonate- and organic matter-free clay; analysis at Stony Brook University ## Fe iron,sediment,,weight percent,,Paleoceanography,,inductively-coupled plasma mass spectrometry,N,carbonate- and organic matter-free clay; analysis at Stony Brook University ## Ti titanium,sediment,,weight percent,,Paleoceanography,,inductively-coupled plasma mass spectrometry,N,carbonate- and organic matter-free clay; analysis at Stony Brook University ## %Al2O3 aluminum oxide,sediment,,mole percent,,Paleoceanography,,inductively-coupled plasma mass spectrometry,N,carbonate- and organic matter-free clay; analysis at Stony Brook University ## %Na2O sodium oxide,sediment,,mole percent,,Paleoceanography,,inductively-coupled plasma mass spectrometry,N,carbonate- and organic matter-free clay; analysis at Stony Brook University ## %CaO calcium oxide,sediment,,mole percent,,Paleoceanography,,inductively-coupled plasma mass spectrometry,N,carbonate- and organic matter-free clay; analysis at Stony Brook University ## %K2O potassium oxide,sediment,,mole percent,,paleoceanography,,inductively-coupled plasma mass spectrometry,N,carbonate- and organic matter-free clay; analysis at Stony Brook University ## %MgO magnesium oxide,sediment,,mole percent,,paleoceanography,,inductively-coupled plasma mass spectrometry,N,carbonate- and organic matter-free clay; analysis at Stony Brook University ## %FeO iron oxide,sediment,,mole percent,,Paleoceanography,,inductively-coupled plasma mass spectrometry,N,carbonate- and organic matter-free clay; analysis at Stony Brook University ## CIA* notes,sediment,,,,Paleoceanography,,,N,chemical index of alteration; carbonate- and organic matter-free clay: CIA* = [Al2O3/(Al2O3 + Na2O+CaO+K2O+FeO+MgO)]*100; See supplement of paper for full documentation ## K/Ar_Age age,sediment,,million year,,Paleoceanography,,,N,carbonate- and organic matter-free clay K/Ar ages calculated using K concentrations obtained from ICP-MS at Stony Brook and 40Ar measured using VG-5400 MS at LDEO. K/Ar ages have an average precision of ±5% (1s) due to a few with large differences (>= 5%) between the duplicates as documented in notes field. ## 143Nd/144Nd 143Nd/144Nd,sediment,,,,Paleoceanography,,multiple collector inductively-coupled plasma mass spectrometry,N,carbonate- and organic matter-free clay; Nu Plasma multi-collector inductively coupled plasma mass spectrometer (MC-ICPMS) at University of Florida (UF) ## 143Nd/144Nd_2SE 143Nd/144Nd,sediment,,,,Paleoceanography,,multiple collector inductively-coupled plasma mass spectrometry,N,carbonate- and organic matter-free clay;Nu Plasma multi-collector inductively coupled plasma mass spectrometer (MC-ICPMS) at University of Florida (UF) ## eNd epsilon neodymium,sediment,,epsilon unit,,Paleoceanography,,,N,carbonate- and organic matter-free clay;normalized to CHUR = 0.512638; epsilon units relative to CHUR 143/144 Nd ## 87Sr/86Sr 87Sr/86Sr,sediment,,,,Paleoceanography,,multiple collector inductively-coupled plasma mass spectrometry; thermal ionization mass spectrometry,N,carbonate- and organic matter-free clay;Nu Plasma multi-collector inductively coupled plasma mass spectrometer (MC-ICPMS); Sr* samples are samples run on TIMS at UF ## 87Sr/86Sr_2SE 87Sr/86Sr,sediment,,,,Paleoceanography,,multiple collector inductively-coupled plasma mass spectrometry; thermal ionization mass spectrometry,N,carbonate- and organic matter-free clay;Nu Plasma multi-collector inductively coupled plasma mass spectrometer (MC-ICPMS); Thermal Ionization Mass Spectrometer (TIMS) at University of Florida (UF) ## 206Pb/204Pb 206Pb/204Pb,sediment,,,,Paleoceanography,,multiple collector inductively-coupled plasma mass spectrometry,N,carbonate- and organic matter-free clay;Repeated analyses of the standard over several years at UF yielded 206Pb/204Pb = 16.937 (±0.004, 2s), 207Pb/204Pb = 15.490 (±0.003, 2s), and 208Pb/204Pb = 36.695 (±0.009, 2s). ## 207Pb/204Pb 207Pb/204Pb,sediment,,,,Paleoceanography,,multiple collector inductively-coupled plasma mass spectrometry,N,carbonate- and organic matter-free clay;Repeated analyses of the standard over several years at UF yielded 206Pb/204Pb = 16.937 (±0.004, 2s), 207Pb/204Pb = 15.490 (±0.003, 2s), and 208Pb/204Pb = 36.695 (±0.009, 2s). ## 208Pb/204Pb 208Pb/204Pb,sediment,,,,paleoceanography,,multiple collector inductively-coupled plasma mass spectrometry,N,carbonate- and organic matter-free clay;Repeated analyses of the standard over several years at UF yielded 206Pb/204Pb = 16.937 (±0.004, 2s), 207Pb/204Pb = 15.490 (±0.003, 2s), and 208Pb/204Pb = 36.695 (±0.009, 2s). ## notes notes,,,,,paleoceanography,,,C, #------------------------ # Data: # Data lines follow (have no #) # Data line format - tab-delimited text, variable short name as header # Missing_Values: N/A Sample_ID Depth_m Age_ka MIS_Stage G_IG carbonate% clay% silt% sand% mean mode sorting kaolinite% smectite% illite% chlorite% clay_ratio plagioclase_feldspar Al Na Ca K Mg Fe Ti %Al2O3 %Na2O %CaO %K2O %MgO %FeO CIA* K/Ar_Age 143Nd/144Nd 143Nd/144Nd_2SE eNd 87Sr/86Sr 87Sr/86Sr_2SE 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb notes 625, 1H-1 66-68 0.67 8.07 1 (Holocene) I 42 13 86 1 5 5 2 48 37 14 0 6.0 N/A 13.2 0.3 0.7 2.3 1.6 5.4 0.4 53.1 1.2 3.7 6.5 14.3 21.2 53.1 230 0.512112 0.000012 -10.3 0.719521* 0.000050 19.195 15.676 38.994 N/A 625, 1H-2 90-92 2.41 18.96 2 G 11 11 89 1 6 5 2 7 55 32 7 1.6 * 12.2 0.2 0.5 2.7 1.6 5.2 0.3 52.2 0.9 2.6 8.0 15.1 21.3 52.2 256 0.512084 0.000011 -10.8 0.7274971* 0.000026 19.312 15.678 38.982 N/A 625, 1H-5 10-12 6.11 34.18 3 G 12 12 88 0 6 5 2 11 24 52 13 0.5 * 13.2 0.4 0.4 4.1 1.8 6.1 0.3 48.8 1.7 1.9 10.4 15.2 21.9 48.8 378 0.511924 0.000010 -13.9 0.7380367* 0.000013 19.554 15.706 39.239 N/A 625, 2H-2 136-138 10.77 53.53 3 G N/A 12 88 0 6 5 2 21 42 22 15 1.7 * 12.2 0.5 0.6 2.7 1.6 5.9 0.5 49.0 2.6 3.2 7.6 14.9 22.8 49.0 580 0.511877 0.000022 -14.8 0.729526 0.000018 19.309 15.681 39.084 N/A 625, 2H-4 2-4 12.43 63.63 4 G N/A 17 82 0 5 4 2 15 41 25 18 1.3 * 12.3 0.7 0.6 2.8 1.9 5.9 0.4 47.8 3.0 2.8 7.6 16.7 22.0 47.8 533 0.511805 0.000013 -16.2 0.733077 0.000017 19.490 15.704 39.263 N/A 625, 2H-4 90-92 13.31 70.59 5a T N/A 18 81 1 5 4 2 28 40 22 9 2.2 N/A 16.9 0.4 0.5 3.5 2.1 7.3 0.5 52.6 1.4 2.1 7.5 14.4 22.0 52.6 232 0.512009 0.000012 -12.3 0.722151 0.000013 19.141 15.668 38.920 N/A 625, 2H-5 86-88 14.77 99.14 5c I 57 11 87 1 6 5 3 37 44 19 0 4.2 * 13.0 0.2 0.7 2.2 1.7 5.5 0.4 52.5 1.1 3.6 6.3 15.0 21.4 52.5 178 0.512099 0.000017 -10.5 0.7189257* 0.000017 19.148 15.675 38.875 large K/Ar age differences (= 5%) between duplicates 625, 2H-6 2-4 15.43 117.60 5e I 42 13 86 1 5 4 2 31 50 19 0 4.2 N/A 13.2 0.2 0.8 2.3 1.7 5.6 0.4 52.3 0.8 3.8 6.2 15.3 21.5 52.3 309 0.512111 0.000013 -10.3 0.7195898* 0.000017 19.216 15.683 39.029 large K/Ar age differences (= 5%) between duplicates 625, 2H-6 90-92 16.31 144.59 6 G 30 9 90 1 7 5 2 65 22 13 0 6.9 N/A 16.6 0.2 0.4 2.3 1.5 7.5 0.5 56.5 0.7 1.5 5.4 11.4 24.6 56.47 221 0.512112 0.000018 -10.3 0.719611 0.000021 19.190 15.675 38.885 N/A 625, 2H-6 90-92 R 16.31 144.59 6 G N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 15.0 0.3 0.3 2.5 1.3 6.1 0.6 57.0 1.4 1.6 6.5 11.2 22.2 57.04 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 625, 2H-6 136-138 16.77 159.89 6 G N/A 9 90 0 6 5 2 38 47 16 0 5.3 * 14.3 0.2 0.6 1.9 1.3 7.1 0.3 54.1 0.7 2.8 5.0 11.4 25.9 54.1 291 0.512108 0.000012 -10.3 N/A* N/A 19.149 15.671 38.923 N/A 625, 2H-7 16-18 17.07 169.94 6 G N/A 10 89 2 7 5 3 75 16 9 0 10.5 N/A 15.0 0.2 0.4 2.3 1.2 5.8 0.6 58.3 1.1 2.1 6.2 10.5 21.7 58.35 271 0.512139 0.000014 -9.7 0.720044 0.000018 19.159 15.667 38.964 N/A 625, 2H-7 16-18 R 17.07 169.94 6 G N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 16.4 0.2 0.6 2.0 1.4 7.4 0.5 56.6 0.8 2.4 4.8 10.8 24.7 56.56 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 625, 4H-1 90-92 27.82 281.33 8 G N/A 31 69 0 4 4 3 38 38 24 0 3.1 * 13.6 0.5 0.6 3.1 1.5 4.6 0.5 54.8 2.3 2.8 8.8 13.5 17.8 54.8 281 0.511924 0.000020 -13.9 0.723992 0.000024 19.161 15.666 39.048 N/A 625, 4H-2 49-51 28.91 301.80 9 I N/A 28 72 0 4 4 3 24 54 22 0 3.6 N/A 14.3 0.4 0.7 3.4 1.6 5.2 0.5 53.8 1.9 3.2 8.7 13.7 18.6 53.8 153 0.512012 0.000024 -12.2 0.719867 0.000034 19.219 15.679 39.008 N/A 625, 4H-2 127-129 29.69 316.44 9 I N/A 23 76 1 4 4 3 34 34 32 0 2.1 * 11.1 0.3 1.0 2.4 1.4 4.8 0.3 50.2 1.5 5.4 7.5 14.6 20.8 50.2 269 0.512026 0.000026 -11.9 0.720913 0.000024 19.220 15.679 39.068 N/A 625, 4H-3 126-128 31.18 343.70 10 G N/A 13 87 0 6 5 2 40 24 36 0 1.8 N/A 10.2 0.5 0.3 3.2 1.1 3.5 0.3 53.1 3.0 1.8 11.5 13.0 17.5 53.1 331 0.511971 0.000020 -13.0 0.732383 0.000013 19.334 15.678 39.064 N/A 625, 4H-4 25-27 31.67 352.17 10 G N/A 12 88 1 6 5 2 15 14 53 19 0.4 * 10.3 0.5 0.4 2.8 1.3 4.3 0.4 49.9 3.0 2.6 9.5 14.7 20.2 49.94 436 0.511891 0.000028 -14.6 0.736138 0.000013 19.359 15.674 39.078 N/A 625, 4H-4 25-27 R 31.67 352.17 10 G N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 11.6 0.3 0.6 3.2 1.6 5.4 0.4 48.8 1.4 3.2 9.4 15.2 22.0 48.83 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 625, 4H-4 109-111 32.51 366.90 10 G N/A 13 86 1 6 5 2 19 25 38 19 0.8 * 13.4 0.7 0.7 3.6 2.0 6.0 0.5 48.2 3.1 3.0 8.9 16.0 20.7 48.2 472 0.511814 0.000030 -16.1 0.735502 0.000014 19.217 15.654 39.023 N/A 625, 4H-5 140-142 34.3 399.25 11 I N/A 19 80 1 4 4 2 22 47 30 0 2.3 * 17.7 0.3 1.1 3.7 2.1 7.6 0.5 51.8 1.2 3.8 7.6 14.2 21.5 51.8 141 0.512051 0.000024 -11.5 0.72249 0.000019 19.171 15.676 38.992 N/A 625, 4H-6 48-50 34.88 409.98 11 I N/A 19 80 1 5 4 2 26 51 23 0 3.3 * 13.9 0.4 0.8 2.9 1.7 5.7 0.4 52.4 1.7 3.6 7.5 14.2 20.7 52.4 232 0.511103 0.000260 N/A 0.722154 0.000017 19.104 15.671 38.900 N/A 625, 4H-4 116-118 35.56 422.64 11 I N/A 26 73 0 5 3 3 N/A N/A N/A N/A N/A N/A 14.4 0.3 0.7 2.9 1.8 5.8 0.4 52.7 1.2 3.3 7.2 15.1 20.5 52.7 180 0.512007 0.000018 -12.3 0.719655 0.000014 19.155 15.679 39.010 N/A 625, 4H-7 20-22 36.1 433.21 12 G N/A 10 89 1 6 5 2 34 51 15 0 5.6 * 15.0 0.2 0.6 2.2 1.5 5.9 0.4 56.3 1.0 3.0 5.8 12.6 21.3 56.3 286 0.511947 0.000036 -13.5 0.720765 0.000018 19.096 15.660 38.927 N/A 625, 4H-7 40-42 36.3 437.34 12 G N/A 8 90 2 7 5 3 44 42 14 0 6.4 N/A 11.3 0.2 0.6 1.9 1.2 4.9 0.3 53.6 1.2 3.7 6.2 12.9 22.5 53.6 227 0.512051 0.000016 -11.5 0.720134 0.000014 19.145 15.669 38.945 N/A 625, 4H-7 50-52 36.4 439.40 12 G N/A 8 91 1 7 5 2 42 45 12 0 7.2 N/A 15.0 0.2 0.7 2.1 1.4 6.2 0.4 55.9 0.8 3.1 5.5 12.1 22.5 55.9 565 0.512086 0.000015 -10.8 0.722782 0.000025 19.112 15.662 38.914 N/A 625, 8H-1 4-6 58.54 804.05 20 G N/A 8 91 1 7 5 2 57 27 16 0 5.2 N/A 19.6 0.3 0.6 3.2 1.5 6.3 0.7 60.3 1.0 2.2 6.9 10.7 18.8 60.3 137 0.511935 0.000022 N/A 0.720382 0.000015 19.109 15.663 38.884 N/A 625, 8H-1 82-84 59.33 824.03 21 I 26 8 91 1 7 5 2 52 36 12 0 7.4 * 15.1 0.2 0.5 2.0 1.2 5.3 0.4 60.3 0.9 2.3 5.6 10.5 20.4 60.3 203 0.512117 0.000011 -10.2 0.719741* 0.000020 19.109 15.664 38.846 N/A 625, 8H-2 24-26 60.25 847.81 21 I 57 12 87 1 6 5 2 46 40 14 0 6.3 * 14.5 0.2 0.7 2.1 1.5 6.5 0.3 54.0 1.1 3.4 5.3 12.8 23.4 54.0 259 0.512056 0.000019 -11.4 0.7207468* 0.000014 19.039 15.660 38.871 N/A 625, 8H-2 84-86 60.85 863.72 21 I 26 8 92 0 6 5 2 62 26 12 0 7.3 N/A 16.1 0.2 0.5 1.9 1.2 4.7 0.4 63.5 0.8 2.5 5.2 10.3 17.7 63.5 225 0.512120 0.000011 -10.1 0.7187367* 0.000020 19.128 15.665 38.935 N/A 625, 8H-2 102-104 61.02 868.29 21/ 22 T N/A 13 87 0 5 5 2 40 50 10 0 8.9 N/A 20.9 0.4 0.6 3.7 1.8 6.9 0.6 58.9 1.3 2.2 7.1 11.6 18.8 58.9 133 0.510596 0.000040 N/A 0.72009 0.000020 19.176 15.669 38.990 N/A 625, 8H-3 64-66 62.15 899.11 22 G 60 26 74 0 4 4 3 36 40 25 0 3.1 * 16.4 0.2 0.9 3.1 2.0 5.8 0.3 54.7 1.0 3.6 7.1 14.9 18.7 54.66 161 0.512076 0.000014 -11.0 0.7193718* 0.000013 19.126 15.674 38.918 large K/Ar age differences (= 5%) between duplicates 625, 8H-3 64-66 R 62.15 899.11 22 G N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 16.5 0.2 0.9 3.2 2.0 5.9 0.3 54.5 1.0 3.7 7.2 14.9 18.8 54.45 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 625, 8H-4 24-26 63.25 928.89 24 G 62 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 160 N/A N/A N/A N/A N/A N/A N/A N/A N/A 625, 8H-4 32-34 63.32 930.73 24 G N/A 12 88 0 6 5 2 46 35 19 0 4.3 N/A 12.8 0.2 0.6 2.2 1.4 4.6 0.3 55.7 0.9 3.4 6.6 14.1 19.3 55.7 222 0.511901 0.000022 N/A 0.718271 0.000017 19.157 15.675 39.021 N/A 625, 8H-4 126-128 64.27 954.97 25 I N/A 14 85 1 6 5 3 44 36 20 0 4.0 * 14.6 0.2 0.9 2.4 1.9 5.8 0.4 53.1 1.0 4.1 6.0 15.3 20.5 53.1 186 0.512052 0.000013 -11.4 0.719687* 0.000014 19.064 15.666 38.871 large K/Ar age differences (= 5%) between duplicates 625, 8H-5 24-26 64.74 966.28 26 G N/A 13 87 1 5 4 2 N/A N/A N/A N/A N/A N/A 16.4 0.3 0.8 2.7 2.2 6.3 0.4 53.8 1.3 3.0 6.0 15.9 19.9 53.8 175 0.512028 0.000017 -11.9 0.718245 0.000023 19.147 15.668 38.997 N/A 625, 8H-5 74-76 65.25 978.04 27 I 67 14 84 2 6 5 3 41 35 25 0 3.1 * 14.2 0.3 0.9 2.4 1.8 5.5 0.4 53.1 1.4 3.9 6.3 15.5 19.9 53.1 302 0.512031 0.000016 -11.8 0.7215606* 0.000017 19.028 15.660 38.881 N/A 625, 8H-6 2-4 66.02 994.86 28 G N/A 9 89 2 7 5 3 48 36 15 0 5.5 N/A 19.2 0.5 0.7 3.2 2.0 7.8 0.5 55.2 1.5 2.3 6.3 13.1 21.5 55.2 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 625, 9H-1 104-106 68.54 1044.41 30 G N/A 11 88 1 7 6 3 52 37 10 0 8.6 * 17.9 0.3 0.6 2.3 1.5 5.7 0.5 60.9 1.2 2.6 5.4 11.4 18.7 60.9 224 0.512057 0.000018 -11.3 0.720431 0.000025 19.015 15.653 38.817 N/A 625, 13H-6 4-6 108.35 2245.35 86 G N/A 23 77 1 5 5 3 N/A N/A N/A N/A N/A N/A 13.7 0.2 0.4 2.2 1.4 4.6 0.3 58.6 0.8 1.8 6.6 13.2 19.0 58.64 204 N/A N/A N/A N/A N/A N/A N/A N/A N/A 625, 13H-6 4-6 R 108.35 2245.35 86 G N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 12.2 0.2 0.3 2.0 1.3 4.3 0.3 57.4 1.0 1.9 6.7 13.6 19.4 57.38 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 625, 14H-1 74-76 110.26 2316.81 90 G N/A 18 82 1 6 6 3 42 45 12 0 7.1 N/A 21.8 0.2 1.0 2.8 1.8 6.7 0.5 61.1 0.7 3.3 5.5 11.3 18.2 61.1 132 N/A N/A N/A N/A N/A N/A N/A N/A N/A 625, 14H-1 134-136 110.85 2333.30 91 I 63 22 77 1 5 5 3 41 44 15 0 5.9 N/A 13.7 0.1 0.8 1.9 1.4 4.9 0.3 57.1 0.7 4.0 5.4 12.9 19.9 57.1 227 0.512118 0.000007 -10.1 0.7170053* 0.000024 19.101 15.667 38.912 N/A 625, 14H-1 149-151 111 2337.32 91 I N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 16.1 0.2 0.8 2.4 1.5 5.3 0.4 58.7 0.7 3.5 6.1 12.4 18.6 58.7 159 N/A N/A N/A N/A N/A N/A N/A N/A N/A 625, 14H-2 34-36 111.35 2347.27 91 I N/A 22 77 1 5 5 3 46 46 8 0 11.4 N/A 18.9 0.4 0.5 3.0 1.5 4.8 0.5 62.7 1.4 2.0 6.9 11.5 15.5 62.7 176 0.512093 0.000011 -10.6 0.722553 0.000016 19.143 15.666 38.953 N/A 625, 14H-2 38-40 111.41 2348.78 91 I N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 15.0 0.2 0.7 2.3 1.2 4.6 0.4 60.2 0.8 3.5 6.5 11.2 17.9 60.2 169 N/A N/A N/A N/A N/A N/A N/A N/A N/A 625, 14H-2 61-63 111.64 2354.24 92 G 57 21 78 1 5 5 3 43 46 12 0 7.5 N/A 15.3 0.2 0.8 2.3 1.3 5.4 0.4 58.2 0.8 3.8 6.0 11.4 19.8 58.2 168 0.512104 0.000014 -10.4 0.7174097* 0.000014 19.130 15.665 38.928 N/A 625, 14H-2 97-99 112 2363.06 92 G N/A 20 79 1 5 5 3 43 44 12 0 7.0 N/A 13.9 0.2 0.7 2.0 1.3 4.4 0.4 59.2 0.9 3.9 5.8 12.2 18.1 59.2 170 0.512097 0.000015 -10.6 0.718625 0.000018 19.078 15.665 38.846 N/A 625, 14H-2 133-135 112.36 2371.87 92/93 T N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 16.4 0.1 0.9 2.1 1.5 5.6 0.4 58.8 0.5 3.8 5.3 12.3 19.3 58.8 206 N/A N/A N/A N/A N/A N/A N/A N/A N/A 625, 14H-3 19-21 112.7 2379.84 93 I N/A 19 80 1 5 5 3 N/A N/A N/A N/A N/A N/A 15.6 0.2 0.7 2.2 1.5 5.8 0.5 57.5 0.8 3.0 5.5 12.5 20.6 57.5 182 0.512133 0.000012 -9.9 0.718154 0.000030 19.113 15.665 38.927 N/A 625, 14H-3 34-36 112.87 2383.99 93 I N/A 17 82 1 6 5 3 43 37 20 0 4.1 N/A 14.8 0.3 0.6 2.3 1.3 5.1 0.5 58.3 1.2 2.7 6.3 11.9 19.5 58.34 130 N/A N/A N/A N/A N/A N/A N/A N/A N/A 625, 14H-3 34-36 R 112.87 2383.99 93 I N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 11.4 0.2 0.5 1.9 1.1 3.8 0.3 57.9 1.3 3.3 6.7 12.2 18.6 57.90 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 625, 14H-3 89-91 113.4 2398.56 94 G N/A 15 84 0 5 5 3 55 33 12 0 7.5 N/A 18.2 0.2 0.5 2.3 1.7 6.8 0.4 58.3 0.8 2.1 5.2 12.6 21.0 58.3 182 0.512039 0.000013 -11.7 0.720942 0.000020 19.162 15.667 38.948 N/A 625, 14H-3 148-150 114.01 2414.13 95 I N/A 17 82 0 6 5 3 35 50 15 0 5.5 N/A 22.3 0.3 0.6 3.3 2.0 8.1 0.6 58.6 0.9 2.0 5.9 12.0 20.6 58.6 117 N/A N/A N/A N/A N/A N/A N/A N/A N/A 625, 14H-4 19-21 114.2 2418.77 95 I N/A 14 86 0 6 5 3 34 31 23 12 1.9 * 11.9 0.1 0.4 2.0 1.1 4.8 0.4 56.5 0.8 2.6 6.6 11.5 22.1 56.5 N/A 0.511831 0.000019 -15.7 0.727576 0.000019 19.078 15.637 39.117 N/A 625, 14H-4 45-47 114.47 2425.58 95 I N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 15.6 0.2 0.8 1.8 1.3 5.2 0.4 60.0 0.8 3.7 4.7 11.4 19.3 59.98 180 0.511828 0.000018 N/A N/A N/A N/A N/A N/A N/A 625, 14H-4 45-47 R 114.47 2425.58 95 I N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 13.2 0.0 0.7 1.7 1.2 4.3 0.3 59.9 0.1 3.8 5.5 12.0 18.7 59.94 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 625, 14H-4 89-91 114.93 2436.59 96 G 46 11 88 1 6 5 2 48 43 9 0 9.7 N/A 17.1 0.1 0.8 2.1 1.4 5.0 0.3 61.9 0.6 3.7 5.2 11.1 17.5 61.9 195 0.512118 0.000013 -10.1 0.7168904* 0.000029 19.102 15.662 38.897 N/A 625, 14H-4 119-121 115.23 2443.64 96 G N/A 13 86 1 6 5 2 29 52 19 0 4.2 N/A 19.7 0.2 1.0 2.5 1.7 6.3 0.5 59.9 0.6 3.8 5.4 11.7 18.6 59.9 144 0.512102 0.000019 -10.5 0.716959 0.000023 19.121 15.665 38.933 N/A 625, 14H-5 8-10 115.64 2454.52 97 I 53 11 86 3 7 5 3 42 48 10 0 8.7 N/A 11.9 0.1 0.6 1.7 1.1 4.8 0.3 56.5 0.7 3.5 5.6 11.8 21.9 56.5 194 0.512108 0.000011 -10.3 0.7179979* 0.000062 19.041 15.662 38.820 N/A 625, 14H-5 45-47 115.96 2464.04 97 I N/A 10 89 1 7 5 2 45 47 8 0 11.3 N/A 17.3 0.3 0.4 2.7 1.6 5.9 0.6 59.2 1.0 1.6 6.4 12.2 19.6 59.2 202 N/A N/A N/A 0.72102 0.000011 19.075 15.661 38.878 N/A 625, 14H-5 74-76 116.28 2474.03 97 I 36 13 86 2 6 5 3 43 41 16 0 5.4 N/A 14.9 0.2 0.7 2.2 1.4 5.0 0.3 58.6 0.7 3.6 6.0 12.0 19.0 58.6 218 0.512107 0.000013 -10.4 0.7192079* 0.000014 19.125 15.659 38.950 N/A 625, 14H-5 119-121 116.75 2488.90 98 G N/A 10 89 1 6 5 2 36 45 18 0 4.5 N/A 15.5 0.1 0.7 2.2 1.5 5.0 0.4 59.1 0.7 3.3 5.8 12.9 18.2 59.1 205 N/A N/A N/A N/A N/A N/A N/A N/A N/A 625, 14H-5 134-136 116.9 2494.01 98/99 T N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 15.1 0.3 0.9 2.4 1.6 6.3 0.4 54.2 1.2 3.9 5.9 13.1 21.6 54.2 226 N/A N/A N/A N/A N/A N/A N/A N/A N/A 625, 14H-6 19-21 117.17 2502.06 99 I 40 11 89 0 6 5 2 43 44 12 0 7.2 N/A 14.3 0.2 0.7 2.2 1.3 4.9 0.3 57.8 0.9 3.6 6.3 12.2 19.2 57.8 238 0.512070 0.000016 -11.1 0.7192131* 0.000024 19.098 15.660 38.949 N/A 625, 14H-6 74-76 117.72 2516.66 100 G N/A 10 89 1 6 5 2 62 21 16 0 5.2 N/A 19.5 0.2 0.3 2.8 1.3 5.1 0.5 65.1 0.9 1.3 6.5 9.9 16.3 65.10 160 N/A N/A N/A N/A N/A N/A N/A N/A N/A 625, 14H-6 74-76 R 117.72 2516.66 100 G N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 19.3 0.2 0.3 2.8 1.3 5.2 0.5 64.5 0.9 1.2 6.6 10.1 16.8 64.47 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 625, 16H-1 69-71 128 2720.51 G6 G 43 14 86 0 5 5 2 51 35 14 0 6.1 N/A 15.4 0.2 0.7 2.2 1.2 4.3 0.4 61.9 0.8 3.4 6.2 10.8 16.8 61.9 196 0.512101 0.000016 -10.5 0.7187543* 0.000020 19.151 15.663 38.921 N/A 625, 16H-1 149-151 128.8 2737.56 G7 I 46 17 82 0 5 4 2 43 43 14 0 6.0 N/A 15.4 0.2 0.8 2.7 1.4 4.4 0.4 59.6 1.1 3.8 7.3 11.9 16.3 59.6 183 0.512106 0.000014 -10.4 0.7187329* 0.000023 18.941 15.656 38.612 N/A 625, 16H-2 19-21 129.02 2743.97 G7 I N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 16.5 0.4 0.8 2.8 1.5 4.8 0.5 58.9 1.6 3.5 7.0 12.4 16.6 58.9 125 N/A N/A N/A N/A N/A N/A N/A N/A N/A 625, 16H-2 104-106 129.86 2768.56 G8 G N/A 21 79 1 5 4 3 43 42 15 0 5.8 N/A 14.0 0.2 0.7 2.2 1.3 4.1 0.3 59.7 0.9 3.7 6.4 12.2 17.1 59.7 144 0.512143 0.000018 -9.7 0.7167948* 0.000016 19.085 15.663 38.854 N/A 625, 16H-2 119-121 130.02 2773.28 G8 G N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 14.7 0.3 0.7 2.2 1.4 4.8 0.4 58.4 1.3 3.4 6.0 12.7 18.2 58.4 153 N/A N/A N/A N/A N/A N/A N/A N/A N/A 625, 16H-2 148-150 130.31 2781.89 G9 I N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 14.3 0.1 0.7 2.1 1.4 4.8 0.4 58.4 0.7 3.4 5.9 12.8 18.8 58.4 189 N/A N/A N/A N/A N/A N/A N/A N/A N/A 625, 16H-3 34-36 130.66 2792.37 G9 I N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 13.6 0.1 0.7 2.0 1.4 4.6 0.4 57.8 0.6 3.6 5.9 13.5 18.6 57.8 153 N/A N/A N/A N/A N/A N/A N/A N/A N/A 625, 16H-3 89-91 131.22 2809.36 G10 G N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 15.3 0.2 0.7 2.2 1.5 4.7 0.5 59.5 0.7 3.4 5.9 12.7 17.7 59.5 148 N/A N/A N/A N/A N/A N/A N/A N/A N/A