# Eastern Equatorial Pacific Stable Isotope and Geochemistry Data since the Last Glacial Termination #----------------------------------------------------------------------- # World Data Service for Paleoclimatology, Boulder # and # NOAA Paleoclimatology Program #----------------------------------------------------------------------- # Template Version 3.0 # Encoding: UTF-8 # NOTE: Please cite original publication, online resource and date accessed when using this data. # If there is no publication information, please cite Investigator, title, online resource and date accessed. # # Description/Documentation lines begin with # # Data lines have no # # # Online_Resource: https://www.ncdc.noaa.gov/paleo/study/31672 # Description: NOAA Landing Page # Online_Resource: https://www.ncei.noaa.gov/pub/data/paleo/contributions_by_author/stott2019/stott2019-vm21-29.txt # Description: NOAA location of the template # # # Data_Type: Paleoceanography # # Dataset_DOI: # # Parameter_Keywords: carbon isotopes, oxygen isotopes, trace metals in carbonates #--------------------------------------- # Contribution_Date # Date: 2020-10-27 #--------------------------------------- # File_Last_Modified_Date # Date: 2020-10-27 #--------------------------------------- # Title # Study_Name: Eastern Equatorial Pacific Stable Isotope and Geochemistry Data since the Last Glacial Termination #--------------------------------------- # Investigators # Investigators: Stott, Lowell D.; Harazin, Kathleen M.; Quintana Krupinski, Nadine B. #--------------------------------------- # Description_Notes_and_Keywords # Description: # Provided Keywords: pCO2, hydrotheral carbon, glacial termination #--------------------------------------- # Publication # Authors: Stott, Lowell D., Kathleen M. Harazin, and Nadine B. Quintana Krupinski # Published_Date_or_Year: 2019 # Published_Title: Hydrothermal carbon release to the ocean and atmosphere from the eastern equatorial Pacific during the last glacial termination # Journal_Name: Environmental Research Letters # Volume: 14 # Edition: # Issue: # Pages: # Report_Number: # DOI: 10.1088/1748-9326/aafe28 # Online_Resource: # Full_Citation: # Abstract: Arguably among the most globally impactful climate changes in Earth's past million years are the glacial terminations that punctuated the Pleistocene epoch. With the acquisition and analysis of marine and continental records, including ice cores, it is now clear that the Earth's climate was responding profoundly to changes in greenhouse gases that accompanied those glacial terminations. But the ultimate forcing responsible for the greenhouse gas variability remains elusive. The oceans must play a central role in any hypothesis that attempt to explain the systematic variations in pCO2 because the Ocean is a giant carbon capacitor, regulating carbon entering and leaving the atmosphere. For a long time, geological processes that regulate fluxes of carbon to and from the oceans were thought to operate too slowly to account for any of the systematic variations in atmospheric pCO2 that accompanied glacial cycles during the Pleistocene. Here we investigate the role that Earth's hydrothermal systems had in affecting the flux of carbon to the ocean and ultimately, the atmosphere during the last glacial termination. We document late glacial and deglacial intervals of anomalously old 14C reservoir ages, large benthic-planktic foraminifera 14C age differences, and increased deposition of hydrothermal metals in marine sediments from the eastern equatorial Pacific (EEP) that indicate a significant release of hydrothermal fluids entered the ocean at the last glacial termination. The large 14C anomaly was accompanied by a ~4-fold increase in Zn/Ca in both benthic and planktic foraminifera that reflects an increase in dissolved [Zn] throughout the water column. Foraminiferal B/Ca and Li/Ca results from these sites document deglacial declines in [] throughout the water column; these were accompanied by carbonate dissolution at water depths that today lie well above the calcite lysocline. Taken together, these results are strong evidence for an increased flux of hydrothermally-derived carbon through the EEP upwelling system at the last glacial termination that would have exchanged with the atmosphere and affected both ?14C and pCO2. These data do not quantify the amount of carbon released to the atmosphere through the EEP upwelling system but indicate that geologic forcing must be incorporated into models that attempt to simulate the cyclic nature of glacial/interglacial climate variability. Importantly, these results underscore the need to put better constraints on the flux of carbon from geologic reservoirs that affect the global carbon budget. #--------------------------------------- # Funding_Agency # Funding_Agency_Name: National Science Foundation # Grant: OCE, MG&G 1558990 #--------------------------------------- # Site_Information # Site_Name: VM21-29 # Location: Eastern Pacific Ocean # Northernmost_Latitude: 0.95 # Southernmost_Latitude: 0.95 # Easternmost_Longitude: -89.35 # Westernmost_Longitude: -89.35 # Elevation: -712 #--------------------------------------- # Data_Collection # Collection_Name: VM21-29 isotopes and trace metals Stott2019 # First_Year: 25000 # Last_Year: 0 # Time_Unit: cal yr BP # Core_Length: # Notes: Piston Core #--------------------------------------- # Chronology_Information # Chronology: # # Labcode sample identification used by University of California AMS 14C laboratory # Depth_cm Depth (cm) mid. point within 2cm thick sample # mat.dated Material Dated # wt. Sample weight (mg) # Plk.14C.raw Planktic conventional radiocarbon age, years before 1950AD # Ben. 14C.raw Benthic conventional radiocarbon age, years before 1950AD # 14C.raw_err radiocarbon age, standard error # datemeth Dating method # Lab AMS lab # notes Notes # # Labcode Depth_cm mat.dated wt. Plk. 14C.raw Ben. 14C.raw 14C.raw_err datemeth Lab notes # 136758 30.5 G.ruber 3.099 7470 NaN 30 AMS UCI-AMS NaN # 136759 30.5 Mixed benthics 2.505 NaN 8195 35 AMS UCI-AMS NaN # 146217 41.5 Mixed benthics 2.457 NaN 8425 45 AMS UCI-AMS NaN # 136760 60.5 G.ruber 2.039 10210 NaN 50 AMS UCI-AMS NaN # 136761 60.5 Mixed benthics 1.994 NaN 11060 45 AMS UCI-AMS NaN # 143522 70.5 N.dutertrei 5.562 10095 NaN 35 AMS UCI-AMS NaN # 140430 70.5 Mixed benthics 2.712 NaN 11990 60 AMS UCI-AMS NaN # 146218 81.5 N.dutertrei 5.241 10950 NaN 35 AMS UCI-AMS NaN # 140431 81.5 Mixed benthics 4.331 NaN 10845 45 AMS UCI-AMS NaN # 146219 81.5 Mixed benthics 3.825 NaN 14885 45 AMS UCI-AMS NaN # 143523 91.5 N.dutertrei 5.042 11730 NaN 45 AMS UCI-AMS NaN # 140432 91.5 Mixed benthics 4.348 NaN 13825 50 AMS UCI-AMS NaN # 146220 101.5 N.dutertrei 7.074 11415 NaN 35 AMS UCI-AMS NaN # 140433 101.5 Mixed benthics 3.106 NaN 16410 80 AMS UCI-AMS NaN # 143524 110.5 N.dutertrei 6.481 14190 NaN 60 AMS UCI-AMS NaN # 140434 110.5 Mixed benthics 5.366 NaN 17050 60 AMS UCI-AMS NaN # 134649 120.5 G. ruber 2.997 17080 NaN 100 AMS UCI-AMS NaN # 148546 120.5 N.dutertrei 6.197 13915 NaN 45 AMS UCI-AMS NaN # 134650 120.5 Mix benthics 4.775 NaN 17030 60 AMS UCI-AMS NaN # 148547 130.5 N.dutertrei 7.054 16200 NaN 60 AMS UCI-AMS NaN # 146221 130.5 Mix benthics 3.821 NaN 18780 70 AMS UCI-AMS NaN # 149446 133.5 Mix benthics 4.165 NaN 18220 60 AMS UCI-AMS NaN # 149447 137.5 Mix benthics 3.283 NaN 18160 70 AMS UCI-AMS NaN # 134651 140.5 G. ruber 1.541 19940 NaN 320 AMS UCI-AMS NaN # 148548 140.5 N.dutertrei 6.657 16730 NaN 70 AMS UCI-AMS NaN # 134652 140.5 Mix benthics 2.928 NaN 19740 170 AMS UCI-AMS NaN # 134653 180.5 G. ruber 1.66 22480 NaN 500 AMS UCI-AMS NaN # 148549 180.5 N.dutertrei 5.257 19770 NaN 90 AMS UCI-AMS NaN # 134654 180.5 Mix benthics 2.14 NaN 22530 190 AMS UCI-AMS NaN # 134655 220.5 G. ruber 2.291 25620 NaN 300 AMS UCI-AMS NaN # 149448 220.5 N.dutertrei 5.32 24680 NaN 70 AMS UCI-AMS NaN # 134656 220.5 Mix benthics 2.143 NaN 24050 550 AMS UCI-AMS NaN # #--------------------------------------- # Variables # Data variables follow that are preceded by "##" in columns one and two. # Variables list, one per line, shortname-tab-longname components (9 components: what, material, error, units, seasonality, archive, detail, method, C or N for Character or Numeric data) ## depth_cm depth,,,centimeter,,paleoceanography;climate reconstructions,,,N, ## d18O_uvig delta 18O,Uvigerina sp.,,per mil VPDB,,paleoceanography,anomalized,isotope ratio mass spectrometry,N, ## d13C_uvig delta 13C,Uvigerina sp.,,per mil VPDB,,paleoceanography,anomalized,isotope ratio mass spectrometry,N, ## d18O_N.dut delta 18O,Neogloboquadrina dutertrei,,per mil VPDB,,paleoceanography,anomalized,isotope ratio mass spectrometry,N,planktic foraminifera ## d13C_N.dut delta 13C,Neogloboquadrina dutertrei,,per mil VPDB,,paleoceanography,anomalized,isotope ratio mass spectrometry,N,planktic foraminifera ## Carbonate notes,,,,,paleoceanography,,,C,Observations of carbonate and aragonite relative abundance and preservation ## O.univ_wgt weight,Orbulina universa,,microgram,,paleoceanography,,,N,average specimen wt; microbalance USC ## comm notes,,,,,paleoceanography,,,C,comment ## [Ca] calcium,Neogloboquadrina incompta,,parts per million,,paleoceanography,,,N,cleaned; 125-250µm ## B/Ca_inc boron/calcium,Neogloboquadrina incompta,,micromole per mole,,paleoceanography,,inductively-coupled plasma mass spectrometry,N,cleaned; 125-250µm ## Mg/Ca_inc magnesium/calcium,Neogloboquadrina incompta,,micromole per mole,,paleoceanography,,inductively-coupled plasma mass spectrometry,N,cleaned; 125-250µm ## U/Ca_inc uranium/calcium,Neogloboquadrina incompta,,micromole per mole,,paleoceanography,,inductively-coupled plasma mass spectrometry,N,cleaned; 125-250µm ## Mn/Ca_inc manganese/calcium,Neogloboquadrina incompta,,micromole per mole,,paleoceanography,,inductively-coupled plasma mass spectrometry,N,cleaned; 125-250µm ## Fe/Ca_inc iron/calcium,Neogloboquadrina incompta,,micromole per mole,,paleoceanography,,inductively-coupled plasma mass spectrometry,N,cleaned; 125-250µm ## Al/Ca_inc aluminum/calcium,Neogloboquadrina incompta,,micromole per mole,,paleoceanography,,inductively-coupled plasma mass spectrometry,N,cleaned; 125-250µm ## [CO3--]_inc carbonate ion,Neogloboquadrina incompta;boron/calcium,,micromole per kilogram,,paleoceanography;climate reconstructions,,,N,B/Ca = [CO32-] * 0.420 (±0.041)- 0.173 (±6.05) after Quintana Krupinski et al. 2017 calibration; cleaned; 125-250µm #------------------------ # Data: # Data lines follow (have no #) # Data line format - tab-delimited text, variable short name as header # Missing_Values: -999 depth_cm d18O_uvig d13C_uvig d18O_N.dut d13C_N.dut Carbonate O.univ_wgt comm [Ca] B/Ca_inc Mg/Ca_inc U/Ca_inc Mn/Ca_inc Fe/Ca_inc Al/Ca_inc [CO3--]_inc 1.5 -0.31 2.34 1.89 0.32 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 5 -999 -999 -999 -999 -999 -999 -999 72.68 1.84 29.33 13.95 26.25 0.464 4.81 173.45 10.5 -0.50 2.61 1.95 0.65 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 21.5 -0.47 2.30 1.77 0.67 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 30.5 -0.37 2.37 1.75 0.89 -999 -999 -999 115.32 67.52 2.51 64.10 12.55 21.26 0.610 161.17 41.5 -0.53 2.74 1.65 0.75 -999 -999 -999 63.23 64.46 1.89 23.77 9.55 8.34 0.688 153.89 50.5 -0.81 2.47 1.54 0.85 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 60.5 -0.91 2.20 1.60 1.07 -999 -999 -999 108.84 65.25 1.88 29.13 9.79 9.04 0.372 155.77 70.5 -0.76 2.95 1.37 0.91 Preservation of calcite and aragonite good 53 -999 128.19 64.54 3.36 32.00 12.95 11.06 0.582 154.07 81.5 -0.60 3.34 1.43 0.99 Preservation of calcite and aragonite good 51 -999 152.60 69.44 1.94 38.03 11.92 12.37 0.892 165.74 91.5 -0.56 3.76 1.23 1.09 Preservation of calcite and aragonite good 40 -999 170.38 66.88 2.29 45.60 12.94 18.68 0.928 159.66 101.5 -0.68 3.32 1.36 1.36 Very low O. universa abundance. Low aragonite abundance. Partial dissolution/many infilled shells 24 -999 140.76 66.42 2.00 29.37 10.25 5.71 0.263 158.54 110.5 -0.55 3.88 1.25 1.56 Very low O. universa abundance. Low aragonite abundance. Partial dissolution/many infilled shells 21 -999 158.89 69.98 1.99 28.84 10.38 7.02 0.324 167.02 120.5 -0.45 3.74 1.14 1.57 Shell preservation moderate 26 -999 176.48 69.69 2.06 70.65 12.55 9.97 0.417 166.34 130.5 -0.58 3.66 1.34 1.25 Very low O. universa abundance. Low aragonite abundance. Partial dissolution/many infilled shells 15 -999 150.57 69.87 2.01 58.02 11.08 10.75 0.511 166.77 133.5 -999 -999 -999 -999 -999 -999 -999 110.77 61.90 1.87 41.11 10.78 5.91 0.261 147.79 137.5 -999 -999 -999 -999 -999 -999 -999 153.41 65.77 1.95 37.23 10.56 6.32 1.113 157.00 140.5 -0.63 3.84 1.29 1.43 Very low O. universa abundance. Low aragonite abundance. Partial dissolution/many infilled shells 19 -999 194.10 71.62 2.02 57.69 9.48 2.23 0.264 170.95 150.5 -0.70 3.46 1.53 1.55 Preservation of calcite and aragonite good 37 -999 -999 -999 -999 -999 -999 -999 -999 -999 160.5 -0.59 3.98 1.35 1.64 Preservation of calcite and aragonite good 29 -999 -999 -999 -999 -999 -999 -999 -999 -999 170.5 -0.44 3.82 1.41 1.21 Preservation of calcite and aragonite good 30 -999 -999 -999 -999 -999 -999 -999 -999 -999 180.5 -999 -999 1.44 1.27 -999 -999 -999 147.62 66.12 1.98 67.21 14.81 11.33 0.411 157.84 190.5 -999 -999 1.53 1.09 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 200.5 -999 -999 1.40 1.26 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 210.5 -999 -999 1.46 1.28 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 220.5 -999 -999 1.56 1.36 -999 -999 -999 138.67 67.62 1.99 114.04 16.39 22.23 0.382 161.40 230.5 -999 -999 1.48 1.10 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 240.5 -999 -999 1.50 1.26 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 251.5 -999 -999 1.52 1.19 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 260.5 -999 -999 1.36 1.06 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 270.5 -999 -999 1.48 1.28 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999 -999