# North Atlantic Deglacial Isotope Data and Reconstructions of Salinity and SST #----------------------------------------------------------------------- # World Data Center for Paleoclimatology, Boulder # and # NOAA Paleoclimatology Program #----------------------------------------------------------------------- # NOTE: Please cite original publication, online resource and date accessed when using these data, # If there is no publication information, please cite investigator, title, online resource and date accessed. # # Online_Resource: http://hurricane.ncdc.noaa.gov/pls/paleox/f?p=519:1:::::P1_STUDY_ID: # Online_Resource: ftp://ftp.ncdc.noaa.gov/pub/data/paleo/contributions_by_author/thornalley2011/thornalley2011-15-4p-plank.txt # # Archive: Paleoceanography #-------------------- # Contribution_Date # Date: 2014-05-21 #-------------------- # Title # Study_Name: North Atlantic Deglacial Isotope Data and Reconstructions of Salinity and SST #-------------------- # Investigators # Investigators: Thornalley, D.J.R.; McCave, I.N.; Elderfield, H. #-------------------- # Description_and_Notes # Description: # #-------------------- # Publication # Authors: Thornalley, D.J.R., H. Elderfield, and I.N. McCave # Published_Date_or_Year: 2011 # Published_Title: Reconstructing North Atlantic deglacial surface hydrography and its link to the Atlantic overturning circulation # Journal_Name: Global and Planetary Change # Volume: 79 # Issue: # Pages: 163-175 # DOI: 10.1016/j.gloplacha.2010.06.003 # Abstract: Paired Mg/Ca–d18O measurements on multiple species of planktic foraminifera are combined with published benthic isotope records from south of Iceland in order to assess the role North Atlantic freshwater input played in determining the evolution of hydrography and climate during the last deglaciation. We demonstrate that Globigerina bulloides and Globorotalia inflata are restricted to intervals when warm Atlantic waters reached the area south of Iceland, and therefore Mg/Ca–d18O data from these species monitor changes in the temperature and seawater d18O signature of the northward inflow of Atlantic water to the area. In contrast, Neogloboquadrina pachyderma (sinistral) calcifies within local subpolar/polar waters and new Mg/Ca–d18O analyses on this species document changes in this water mass. We observe two major surface ocean events during Heinrich Stadial 1 (~ 17–14.7 ka): an early freshening of the Atlantic Inflow (~ 17–16 ka), and a later interval (16–14.7 ka) of local surface freshening, sea-ice formation and brine rejection that was associated with a further reduction in deep ocean ventilation. Centennial-scale cold intervals during the Bølling–Allerød (BA, 14.7–12.9 ka) were likely triggered by the rerouting of North American continental run-off during ice-sheet retreat. However, the relative effects of these freshwater events on deep ventilation and climate south of Iceland appear to have been modulated by the background climate deterioration. Two freshwater events occurred during the Younger Dryas cold interval (YD, 12.9–11.7 ka), both accompanied by a reduction in deep ventilation south of Iceland: an early YD freshening of the Atlantic Inflow and local subpolar/polar waters, and a late YD ice-rafted detritus event that was possibly related to brine formation south of Iceland. Based on our reconstructions, the strengthening of the Atlantic Meridional Overturning Circulation at the onset of BA and Holocene may have been promoted by the subsurface warming of subpolar/polar water, brine formation that drew warm saline Atlantic water northwards, and the high background salinity of the Atlantic Inflow. # #-------------------- # Publication # Authors: Thornalley, D.J.R., I.N. McCave, and H. Elderfield # Published_Date_or_Year: 2010 # Published_Title: Freshwater input and abrupt deglacial climate change in the North Atlantic # Journal_Name: Paleoceanography # Volume: 25 # Issue: # Report Number: PA1201 # DOI: 10.1029/2009PA001772 # Abstract: Greenland ice core records indicate that the last deglaciation (~7–21 ka) was punctuated by numerous abrupt climate reversals involving temperature changes of up to 5°C–10°C within decades. However, the cause behind many of these events is uncertain. A likely candidate may have been the input of deglacial meltwater, from the Laurentide ice sheet (LIS), to the high-latitude North Atlantic, which disrupted ocean circulation and triggered cooling. Yet the direct evidence of meltwater input for many of these events has so far remained undetected. In this study, we use the geochemistry (paired Mg/Ca-d18O) of planktonic foraminifera from a sediment core south of Iceland to reconstruct the input of freshwater to the northern North Atlantic during abrupt deglacial climate change. Our record can be placed on the same timescale as ice cores and therefore provides a direct comparison between the timing of freshwater input and climate variability. Meltwater events coincide with the onset of numerous cold intervals, including the Older Dryas (14.0 ka), two events during the Allerød (at ~13.1 and 13.6 ka), the Younger Dryas (12.9 ka), and the 8.2 ka event, supporting a causal link between these abrupt climate changes and meltwater input. During the Bølling-Allerød warm interval, we find that periods of warming are associated with an increased meltwater flux to the northern North Atlantic, which in turn induces abrupt cooling, a cessation in meltwater input, and eventual climate recovery. This implies that feedback between climate and meltwater input produced a highly variable climate. A comparison to published data sets suggests that this feedback likely included fluctuations in the southern margin of the LIS causing rerouting of LIS meltwater between southern and eastern drainage outlets, as proposed by Clark et al. (2001). #-------------------- # Publication # Authors: Thornalley, D.J.R., H. Elderfield, and I.N. McCave # Published_Date_or_Year: 2010 # Published_Title: Intermediate and Deep Water Paleoceanography of the Northern North Atlantic Over the Past 21,000 years # Journal_Name: Paleoceanography # Volume: 25 # Issue: 1 # Report Number: PA1211 # DOI: 10.1029/2009PA001833 # Abstract: Benthic foraminiferal stable isotope records from four high-resolution sediment cores, forming a depth transect between 1237 m and 2303 m on the South Iceland Rise, have been used to reconstruct intermediate and deep water paleoceanographic changes in the northern North Atlantic during the last 21 ka (spanning Termination I and the Holocene). Typically, a sampling resolution of ~100 years is attained. Deglacial core chronologies are accurately tied to North Greenland Ice Core Project (NGRIP) ice core records through the correlation of tephra layers and changes in the percent abundance of Neogloboquadrina pachyderma (sinistral) with transitions in NGRIP. The evolution from the glacial mode of circulation to the present regime is punctuated by two periods with low benthic d13C and d18O values, which do not lie on glacial or Holocene water mass mixing lines. These periods correlate with the late Younger Dryas/Early Holocene (11.5–12.2 ka) and Heinrich Stadial 1 (14.7–16.8 ka) during which time freshwater input and sea-ice formation led to brine rejection both locally and as an overflow exported from the Nordic seas into the northern North Atlantic, as earlier reported by Meland et al. (2008). The export of brine with low d13C values from the Nordic seas complicates traditional interpretations of low d13C values during the deglaciation as incursions of southern sourced water, although the spatial extent of this brine is uncertain. The records also reveal that the onset of the Younger Dryas was accompanied by an abrupt and transient (~200–300 year duration) decrease in the ventilation of the northern North Atlantic. During the Holocene, Iceland-Scotland Overflow Water only reached its modern flow strength and/or depth over the South Iceland Rise by 7–8 ka, in parallel with surface ocean reorganizations and a cessation in deglacial meltwater input to the North Atlantic. #-------------------- # Publication # Authors: Thornalley, D.J.R., H. Elderfield, and I.N. McCave # Published_Date_or_Year: 2009 # Published_Title: Holocene oscillations in temperature and salinity of the subpolar North Atlantic # Journal_Name: Nature # Volume: 457 # Issue: 5 # Pages: 711-714 # DOI: 10.1038/nature07717 # Abstract: The Atlantic meridional overturning circulation (AMOC) transports warm salty surface waters to high latitudes, where they cool, sink and return southwards at depth. Through its attendant meridional heat transport, the AMOC helps maintain a warm northwestern European climate, and acts as a control on the global climate. Past climate fluctuations during the Holocene epoch (~11,700 years ago to the present) have been linked with changes in North Atlantic Ocean circulation. The behaviour of the surface flowing salty water that helped drive overturning during past climatic changes is, however, not well known. Here we investigate the temperature and salinity changes of a substantial surface inflow to a region of deep-water formation throughout the Holocene. We find that the inflow has undergone millennial-scale variations in temperature and salinity (~3.5°C and ~1.5 practical salinity units, respectively) most probably controlled by subpolar gyre dynamics. The temperature and salinity variations correlate with previously reported periods of rapid climate change. The inflow becomes more saline during enhanced freshwater flux to the subpolar North Atlantic. Model studies predict a weakening of AMOC in response to enhanced Arctic freshwater fluxes, although the inflow can compensate on decadal timescales by becoming more saline. Our data suggest that such a negative feedback mechanism may have operated during past intervals of climate change. #--------------------- # Funding_Agency # Funding_Agency_Name: # Grant: #--------------------- # Site_Information # Site_Name: RAPiD-15-4P # Location: North Atlantic Ocean # Country: # Northernmost_Latitude: 62.293 # Southernmost_Latitude: 62.293 # Easternmost_Longitude: -17.134 # Westernmost_Longitude: -17.134 # Elevation: -2133 #------------------ # Data_Collection # Collection_Name: RAPiD-15-4P planktics Th11 # Earliest_Year: 21064 # Most_Recent_Year: 7039 # Time_Unit: calyr BP # Core_Length: # Notes: All data except N. pachy. (s) data originally presented in Thornalley, McCave & Elderfield, 2010, Paleoceanography, 2009PA001772, "Freshwater input and abrupt deglacial climate change in the North Atlantic" # N. pachy. (s) isotope data originally presented in Thornalley, Elderfield & McCave, 2010, Paleoceanography, 2009PA001833, "Intermediate and Deep Water Paleoceanography of the Northern North Atlantic Over the Past 21,000 years" # # Stable isotope values relative to VPDB standard, run in Godwin Laboratory, Univ. of Cambridge # # Temperature calculated using Mg/Ca = B exp (0.1 × T); B = 0.794, 0.76 and 0.52 for G. bulloides, G. inflata and N. pachy. (s) respectively # # d18Osw calculated using Kim and O'Neil (1997), including a -0.6‰ offset for G. bulloides. Note - no offset used for N. pachy. (s) contrary to manuscript, and VPDB to SMOW conversion of 0.27‰ # "Ice-volume corrected" for whole ocean changes using Fairbanks (1989) sea-level curve, assuming a LGM to late Holocene shift of 1 ‰ # Salinity calculated based on North Atlantic relation of LeGrande and Schmidt (2006) and also for N. pachyderma for mixing with a freshwater endmember # #------------------ # Chronology: # # #------------------ # Variables # # Data line variables format: one variable per line, shortname- 9 components: what, material, error, units, seasonality, archive, detail, method, C or N for Character or Numeric data) # Data line format: tab-delimited text, variable short name as header ## depth_top depth bottom of sample interval,,,cm,,paleoceanography,,,N ## depth_bot depth top of sample interval,,,cm,,paleoceanography,,,N ## depth_cm depth,,,cm,,,,,N ## age_calkaBP2000 age,,,calendar kyr before 2000AD,,,,,N ## %n.pachy-l Neogloboquadrina pachyderma left coiling,,,percent,,paleoceanography,,,N ## salcorr global salinity correction,,,psu,,paleoceanography,based on LeGrande and Schmidt (2006) and N. pachyderma mixing with a freshwater endmember,,N ## d18Ocorr global delta 18O correction,,,per mil VPDB,,paleoceanography,using Fairbanks (1989) sea-level curve, assuming a LGM to late Holocene shift of 1 ‰,,N ## d18Og.bull delta 18O,Globigerina bulloides,,per mil VPDB,,paleoceanography,,,N ## d18Og.bull-ivc delta 18O,Globigerina bulloides,,per mil VPDB,,paleoceanography,ice-volume corrected,,N ## Mg/Ca-g.bull Magnesium Calcium ratio,Globigerina bulloides,,mmol/mol,,paleoceanography,,,N ## sst-Mg/Ca-g.bull sea surface temperature,Magnesium Calcium ratio G. bulloides,,degrees Celsius,,paleoceanography,,,N ## d18Osw-ivc-g.bull delta 18O,seawater using G. bulloides ice-volume corrected,,per mil VPDB,,paleoceanography,,,N ## d18Og.infla delta 18O,Globorotalia inflata,,per mil VPDB,,paleoceanography,,,N ## d18Og.infla-ivc delta 13C,Globorotalia inflata,,per mil VPDB,,paleoceanography,ice-volume corrected,,N ## Mg/Ca-g.infla Magnesium Calcium ratio,Globorotalia inflata,,mmol/mol,,paleoceanography,,,N ## sst-Mg/Ca-g.infla sea surface temperature,Magnesium Calcium ratio G. inflata,,degrees Celsius,,paleoceanography,,,N ## d18Osw-ivc-g.infla delta 18O,seawater using G. inflata ice-volume corrected,,per mil VPDB,,paleoceanography,,,N ## d18On.pachy-l delta 18O,Neogloboquadrina pachyderma left coiling,,per mil VPDB,,paleoceanography,,,N ## d18On.pachy-l-ivc delta 13C,Neogloboquadrina pachyderma left coiling,,per mil VPDB,,paleoceanography,ice-volume corrected,,N ## Mg/Ca-n.pachy-l Magnesium Calcium ratio,Neogloboquadrina pachyderma left coiling,,mmol/mol,,paleoceanography,,,N ## sst-Mg/Ca-n.pachy-l sea surface temperature,Magnesium Calcium ratio N. pachyderma left coiling,,degrees Celsius,,paleoceanography,,,N ## d18Osw-ivc-n.pachy-l delta 18O,seawater using N. pachyderma left coiling ice-volume corrected,,per mil VPDB,,paleoceanography,,,N ## notes notes,,, ,,,,,C #----------------- # Data: # Missing Value: NaN depth_top depth_bot depth_cm age_calkaBP2000 %n.pachy-l salcorr d18Ocorr d18Og.bull d18Og.bull-ivc Mg/Ca-g.bull sst-Mg/Ca-g.bull d18Osw-ivc-g.bull d18Og.infla d18Og.infla-ivc Mg/Ca-g.infla sst-Mg/Ca-g.infla d18Osw-ivc-g.infla d18On.pachy-l d18On.pachy-l-ivc Mg/Ca-n.pachy-l sst-Mg/Ca-n.pachy-l d18Osw-ivc-n.pachy-l notes 168 169 168.5 7.089 0.32 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 328 329 328.5 8.153 0.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 336 337 336.5 8.206 0.66 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 344 345 344.5 8.259 0.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 352 353 352.5 8.313 0.33 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 360 361 360.5 8.366 0.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 376 377 376.5 8.602 0.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 384 385 384.5 8.786 0.00 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 392 393 392.5 8.969 0.66 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 400 401 400.5 9.152 0.98 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 408 409 408.5 9.336 0.66 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 416 417 416.5 9.519 0.34 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 424 425 424.5 10.181 1.68 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 432 433 432.5 10.764 3.97 0.340 0.309 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 434 435 434.5 10.904 3.49 0.350 0.318 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 2.20 1.89 1.026 6.79 0.07 436 437 436.5 11.043 10.83 0.360 0.328 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 2.42 2.09 1.047 7.00 0.32 438 439 438.5 11.182 19.71 0.383 0.348 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 2.54 2.20 0.987 6.41 0.28 440 441 440.5 11.321 39.53 0.413 0.375 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 2.62 2.25 1.114 7.62 0.62 442 443 442.5 11.460 60.44 0.442 0.402 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 2.46 2.05 1.001 6.55 0.18 444 445 444.5 11.509 35.28 0.453 0.412 2.14 1.13 1.941 8.94 -0.19 2.34 1.92 1.760 8.40 0.89 2.49 2.08 0.980 6.34 0.15 446 447 446.5 11.557 31.79 0.463 0.421 2.17 1.15 1.912 8.79 -0.21 2.39 1.97 1.774 8.48 0.96 2.57 2.15 0.958 6.11 0.17 448 449 448.5 11.606 29.48 0.471 0.428 2.29 1.26 1.833 8.37 -0.19 2.21 1.78 1.706 8.08 0.69 2.57 2.14 1.017 6.70 0.30 450 451 450.5 11.654 40.91 0.474 0.431 2.13 1.09 2.182 10.11 0.04 2.49 2.06 1.676 7.91 0.93 2.96 2.53 1.008 6.62 0.67 451 452 451.5 11.679 NaN 0.476 0.433 NaN NaN NaN NaN NaN 2.20 1.76 1.800 8.62 0.80 NaN NaN NaN NaN NaN 452 453 452.5 11.703 65.06 0.478 0.434 2.18 1.15 2.166 10.04 0.08 NaN NaN 1.703 8.07 NaN 3.07 2.64 1.004 6.58 0.77 453 454 453.5 11.750 NaN 0.481 0.437 NaN NaN NaN NaN NaN 2.42 1.98 1.723 8.19 0.92 NaN NaN NaN NaN NaN 454 455 454.5 11.797 82.30 0.484 0.440 2.38 1.34 1.909 8.77 -0.02 2.48 2.04 1.611 7.51 0.82 3.04 2.60 0.915 5.65 0.51 455 456 455.5 11.843 NaN 0.487 0.443 NaN NaN NaN NaN NaN 2.32 1.87 1.769 8.45 0.88 NaN NaN NaN NaN NaN 456 457 456.5 11.890 89.31 0.490 0.445 2.10 1.06 2.078 9.62 -0.11 2.31 1.87 1.712 8.12 0.80 3.11 2.66 0.921 5.72 0.59 457 458 457.5 11.937 NaN 0.493 0.448 NaN NaN NaN NaN NaN 2.20 1.75 1.648 7.74 0.60 NaN NaN NaN NaN NaN 458 459 458.5 11.984 85.76 0.496 0.451 NaN NaN NaN NaN NaN 2.25 1.80 1.628 7.62 0.62 3.15 2.70 0.989 6.43 0.80 459 460 459.5 12.031 NaN 0.454 0.499 NaN NaN NaN NaN NaN 2.28 1.83 1.772 8.47 0.85 NaN NaN NaN NaN NaN 460 461 460.5 12.077 NaN 0.457 0.502 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN Possible reworking 461 462 461.5 12.124 NaN 0.460 0.506 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN Possible reworking 462 463 462.5 12.171 87.47 0.462 0.509 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN Possible reworking 463 464 463.5 12.258 NaN 0.468 0.514 NaN NaN NaN NaN NaN 2.34 1.88 NaN NaN NaN NaN NaN NaN NaN NaN 464 465 464.5 12.345 91.08 0.520 0.473 2.20 1.12 2.098 9.72 -0.02 2.32 1.85 1.863 8.97 1.01 3.47 3.00 0.848 4.89 0.73 465 466 465.5 12.432 87.12 0.526 0.478 NaN NaN NaN NaN NaN 2.28 1.80 1.815 8.71 0.90 NaN NaN NaN NaN NaN 466 467 466.5 12.519 89.11 0.531 0.483 2.26 1.18 1.661 7.38 -0.50 2.48 2.00 NaN NaN NaN 3.50 3.02 0.763 3.83 0.49 467 468 467.5 12.606 85.84 0.537 0.488 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 468 469 468.5 12.693 89.39 0.543 0.493 2.56 1.47 1.785 8.10 -0.05 2.67 2.17 NaN NaN NaN 3.49 2.99 0.810 4.43 0.61 469 470 469.5 12.780 71.19 0.546 0.497 NaN NaN NaN NaN NaN 2.65 2.15 NaN NaN NaN NaN NaN NaN NaN NaN 470 471 470.5 12.814 70.59 0.550 0.500 2.07 0.97 NaN NaN NaN 2.15 1.65 NaN NaN NaN 3.13 2.63 0.821 4.57 0.28 471 472 471.5 12.849 56.75 0.553 0.502 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 472 473 472.5 12.883 43.55 0.555 0.504 2.69 1.59 1.735 7.82 0.00 2.75 2.24 1.557 7.17 1.01 3.06 2.55 0.962 6.15 0.58 473 474 473.5 12.917 35.80 0.557 0.506 NaN NaN NaN NaN NaN 2.77 2.26 1.669 7.87 1.20 NaN NaN NaN NaN NaN 474 475 474.5 12.951 41.01 0.559 0.508 2.66 1.55 1.888 8.66 0.16 2.85 2.34 NaN NaN NaN 3.05 2.54 0.867 5.11 0.32 475 476 475.5 12.986 34.03 0.561 0.510 NaN NaN NaN NaN NaN 2.53 2.02 1.493 6.75 0.70 NaN NaN NaN NaN NaN 476 477 476.5 13.020 63.97 0.564 0.512 NaN NaN 1.913 8.80 NaN 2.59 2.08 1.511 6.87 0.79 3.40 2.88 0.862 5.05 0.65 477 478 477.5 13.140 78.87 0.572 0.520 NaN NaN NaN NaN NaN 2.28 1.76 1.452 6.47 0.38 NaN NaN NaN NaN NaN 478 479 478.5 13.260 74.00 0.580 0.527 2.48 1.35 1.812 8.25 -0.13 2.46 1.93 NaN NaN NaN 3.39 2.87 0.894 5.42 0.72 479 480 479.5 13.363 37.36 0.587 0.533 NaN NaN NaN NaN NaN 2.78 2.25 1.313 5.47 0.65 NaN NaN NaN NaN NaN 480 481 480.5 13.450 45.42 0.594 0.540 2.82 1.68 1.691 7.56 0.04 2.54 2.00 1.640 7.69 0.93 3.12 2.58 0.944 5.97 0.56 481 482 481.5 13.537 46.39 0.599 0.544 NaN NaN NaN NaN NaN 2.74 2.20 NaN NaN NaN NaN NaN NaN NaN NaN 482 483 482.5 13.592 68.17 0.604 0.549 2.57 1.42 1.535 6.59 -0.45 2.53 1.98 1.713 8.13 1.02 3.37 2.82 0.860 5.03 0.58 483 484 483.5 13.616 78.62 0.606 0.551 NaN NaN NaN NaN NaN 2.86 2.31 NaN NaN NaN NaN NaN NaN NaN NaN 484 485 484.5 13.640 83.21 0.608 0.552 2.51 1.36 1.789 8.12 -0.15 2.28 1.73 1.606 7.48 0.62 3.35 2.80 0.748 3.64 0.23 485 486 485.5 13.664 53.81 0.609 0.554 NaN NaN NaN NaN NaN 1.98 1.42 1.507 6.85 0.17 NaN NaN NaN NaN NaN 486 487 486.5 13.688 69.51 0.611 0.556 2.23 1.08 NaN NaN NaN NaN NaN NaN 8.65 1.05 3.39 2.83 0.834 4.72 0.52 487 488 487.5 13.715 40.76 0.614 0.558 NaN NaN NaN NaN NaN 2.18 1.63 1.508 6.85 0.38 NaN NaN NaN NaN NaN 488 489 488.5 13.744 38.01 0.616 0.560 2.33 1.17 2.083 9.65 0.01 NaN NaN 1.656 7.79 NaN 2.95 2.39 0.854 4.97 0.14 489 490 489.5 13.774 50.00 0.619 0.563 NaN NaN NaN NaN NaN 2.13 1.57 1.781 8.52 0.71 NaN NaN NaN NaN NaN 490 491 490.5 13.803 48.98 0.622 0.566 2.85 1.68 1.722 7.74 0.09 2.63 2.07 1.633 7.65 1.01 3.07 2.51 0.945 5.97 0.49 491 492 491.5 13.833 50.68 0.634 0.576 NaN NaN NaN NaN NaN 2.74 2.16 NaN NaN NaN NaN NaN NaN NaN NaN 492 493 492.5 13.862 52.31 0.645 0.587 2.98 1.79 1.627 7.18 0.06 2.41 1.82 1.571 7.26 0.70 3.09 2.50 0.926 5.78 0.44 493 494 493.5 13.892 36.66 0.657 0.597 NaN NaN NaN NaN NaN 2.65 2.05 1.540 7.06 0.89 NaN NaN NaN NaN NaN 494 495 494.5 13.921 58.77 0.668 0.608 2.96 1.75 1.503 6.38 -0.17 2.70 2.09 1.631 7.64 1.07 3.38 2.78 0.870 5.14 0.57 495 496 495.5 13.951 58.12 0.680 0.618 NaN NaN NaN NaN NaN 2.56 1.94 NaN NaN NaN NaN NaN NaN NaN NaN 496 497 496.5 13.980 64.14 0.692 0.629 2.55 1.32 2.036 9.42 0.11 2.70 2.07 1.905 9.19 1.44 3.27 2.64 0.881 5.27 0.46 497 498 497.5 13.990 80.40 0.695 0.632 NaN NaN NaN NaN NaN 3.04 2.40 1.700 8.05 1.51 NaN NaN NaN NaN NaN 498 499 498.5 14.000 82.19 0.699 0.636 2.77 1.54 1.684 7.52 -0.11 NaN NaN NaN NaN NaN 3.47 2.84 0.838 4.77 0.53 499 500 499.5 14.010 85.54 0.703 0.639 NaN NaN NaN NaN NaN 2.79 2.15 1.790 8.57 1.38 NaN NaN NaN NaN NaN 500 501 500.5 14.020 91.64 0.707 0.643 2.83 1.58 1.815 8.27 0.11 NaN NaN NaN NaN NaN 3.76 3.12 0.891 5.39 0.96 501 502 501.5 14.045 75.17 0.717 0.652 NaN NaN NaN NaN NaN 2.90 2.25 NaN NaN NaN NaN NaN NaN NaN NaN 502 503 502.5 14.070 75.86 0.727 0.661 2.84 1.58 1.865 8.54 0.17 2.24 1.58 NaN NaN NaN 3.67 3.01 0.969 6.22 1.05 503 504 503.5 14.095 64.17 0.737 0.670 NaN NaN NaN NaN NaN 2.82 2.15 1.559 7.19 1.09 NaN NaN NaN NaN NaN 504 505 504.5 14.120 52.48 0.746 0.679 2.73 1.46 1.936 8.91 0.13 2.29 1.61 1.796 8.60 0.88 3.42 2.75 0.957 6.10 0.76 505 506 505.5 14.184 47.92 0.769 0.699 NaN NaN NaN NaN NaN 2.14 1.44 1.538 7.05 0.38 NaN NaN NaN NaN NaN 506 507 506.5 14.249 44.21 0.791 0.720 2.78 1.46 1.658 7.36 -0.23 1.89 1.17 1.554 7.16 0.16 3.43 2.71 0.984 6.38 0.79 507 508 507.5 14.313 28.54 0.798 0.726 NaN NaN NaN NaN NaN 2.21 1.49 1.584 7.34 0.52 NaN NaN NaN NaN NaN 508 509 508.5 14.378 19.84 0.805 0.732 2.67 1.34 1.770 8.02 -0.19 2.18 1.44 NaN NaN NaN 3.20 2.47 0.903 5.52 0.35 509 510 509.5 14.442 16.89 0.811 0.738 NaN NaN NaN NaN NaN 2.39 1.65 1.567 7.23 0.67 NaN NaN NaN NaN NaN 510 511 510.5 14.507 26.91 0.818 0.744 2.68 1.34 2.065 9.56 0.15 2.66 1.92 1.537 7.04 0.90 3.50 2.75 0.828 4.65 0.43 511 512 511.5 14.571 29.21 0.825 0.750 NaN NaN NaN NaN NaN 2.66 1.91 1.562 7.21 0.93 NaN NaN NaN NaN NaN 512 513 512.5 14.636 38.67 0.831 0.756 2.84 1.48 1.672 7.44 -0.19 2.79 2.03 1.715 8.14 1.28 3.69 2.93 0.911 5.60 0.83 513 514 513.5 14.700 54.31 0.836 0.760 NaN NaN NaN NaN NaN 2.21 1.45 1.654 7.77 0.62 NaN NaN NaN NaN NaN 514 515 514.5 14.786 54.19 0.840 0.764 2.72 1.36 1.972 9.10 0.07 2.45 1.69 1.768 8.45 1.02 3.55 2.79 0.832 4.70 0.47 515 516 515.5 14.872 68.83 0.845 0.768 NaN NaN NaN NaN NaN 2.61 1.84 1.576 7.29 0.91 NaN NaN NaN NaN NaN 516 517 516.5 14.959 81.28 0.850 0.773 2.72 1.35 1.895 8.70 -0.03 2.85 2.07 NaN NaN NaN 3.35 2.57 0.878 5.24 0.39 517 518 517.5 15.045 NaN 0.855 0.777 NaN NaN NaN NaN NaN 2.58 1.80 NaN NaN NaN NaN NaN NaN NaN NaN 518 519 518.5 15.131 83.33 0.860 0.782 2.71 1.32 1.895 8.70 -0.05 2.17 1.39 NaN NaN NaN 3.41 2.62 0.848 4.89 0.35 519 520 519.5 15.217 NaN 0.865 0.786 NaN NaN NaN NaN NaN 2.16 1.37 1.657 7.79 0.57 NaN NaN NaN NaN NaN 520 521 520.5 15.303 85.65 0.870 0.791 2.75 1.36 1.864 8.53 -0.06 1.95 1.16 NaN NaN NaN 3.26 2.47 0.906 5.55 0.36 521 522 521.5 15.390 NaN 0.875 0.795 NaN NaN NaN NaN NaN 2.60 1.80 NaN NaN NaN NaN NaN NaN NaN NaN 522 523 522.5 15.476 73.85 0.880 0.800 2.80 1.40 1.799 8.18 -0.10 2.74 1.94 NaN NaN NaN 3.49 2.69 0.843 4.83 0.41 Possible reworking 523 524 523.5 15.562 NaN 0.885 0.804 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN Possible reworking 524 525 524.5 15.648 79.06 0.890 0.809 2.61 1.20 2.053 9.50 0.00 2.29 1.48 NaN NaN NaN 3.68 2.87 0.881 5.27 0.69 Possible reworking 525 526 525.5 15.734 NaN 0.895 0.813 NaN NaN NaN NaN NaN 2.05 1.24 1.998 9.66 0.89 NaN NaN NaN NaN NaN Possible reworking 526 527 526.5 15.821 81.25 0.899 0.818 1.98 0.56 1.947 8.97 -0.75 2.04 1.23 NaN NaN NaN 3.79 2.97 0.841 4.81 0.68 Possible reworking 528 529 528.5 15.993 57.40 0.909 0.827 1.60 0.17 2.327 10.75 -0.74 1.82 0.99 1.720 8.17 0.32 3.93 3.10 0.814 4.48 0.73 Possible reworking 530 531 530.5 16.166 75.79 0.916 0.833 2.06 0.63 NaN NaN NaN 1.77 0.93 NaN NaN NaN 3.69 2.86 0.900 5.49 0.73 Possible reworking 532 533 532.5 16.338 68.73 0.923 0.839 1.63 0.19 2.028 9.38 -1.03 1.69 0.85 NaN NaN NaN 3.74 2.90 0.828 4.66 0.57 Possible reworking 534 535 534.5 16.510 83.20 0.930 0.845 2.23 0.79 NaN NaN NaN 1.94 1.10 NaN NaN NaN 4.04 3.19 0.823 4.60 0.85 Possible reworking 536 537 536.5 16.683 90.57 0.937 0.851 NaN NaN 1.906 8.76 NaN 1.86 1.01 NaN NaN NaN 4.08 3.23 0.792 4.21 0.80 Possible reworking 538 539 538.5 16.855 NaN 0.945 0.859 1.21 -0.24 1.712 7.68 -1.86 1.82 0.96 1.524 6.96 0.03 4.09 3.23 0.731 3.41 0.60 Possible reworking 540 541 540.5 17.028 90.43 0.954 0.867 1.30 -0.17 NaN NaN NaN 1.64 0.77 1.756 8.37 0.18 4.18 3.31 0.723 3.30 0.66 Possible reworking 542 543 542.5 17.200 NaN 0.963 0.876 1.49 0.02 1.947 8.97 -1.30 1.80 0.93 1.504 6.83 -0.01 4.19 3.32 0.730 3.39 0.69 544 545 544.5 17.556 94.71 1.013 0.921 1.84 0.32 NaN NaN NaN 1.81 0.89 NaN NaN NaN 4.16 3.24 0.703 3.02 0.51 546 547 546.5 17.912 NaN 1.021 0.928 1.51 -0.02 NaN NaN NaN 1.97 1.05 NaN NaN NaN 4.17 3.24 0.764 3.85 0.72 548 549 548.5 18.267 91.69 1.028 0.935 1.44 -0.09 NaN NaN NaN NaN NaN NaN NaN NaN 4.16 3.22 0.737 3.49 0.61 550 551 550.5 18.623 NaN 1.036 0.941 1.51 -0.03 NaN NaN NaN 1.94 1.00 NaN NaN NaN 4.20 3.26 0.782 4.09 0.79 552 553 552.5 18.979 89.47 1.043 0.948 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 4.15 3.21 0.789 4.17 0.76 554 555 554.5 19.335 NaN 1.050 0.955 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 4.21 3.26 0.769 3.91 0.75 556 557 556.5 19.691 94.05 1.058 0.962 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 4.22 3.26 0.746 3.61 0.68 558 559 558.5 20.047 NaN 1.065 0.968 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 4.25 3.28 0.737 3.49 0.67 560 561 560.5 20.402 89.16 1.071 0.974 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 4.21 3.23 0.805 4.37 0.84 562 563 562.5 20.758 NaN 1.077 0.979 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 4.27 3.29 0.751 3.68 0.73 564 565 564.5 21.114 92.90 1.083 0.985 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 4.26 3.28 0.740 3.53 0.68