# Atmospheric CO2 20 Million Year Foraminiferal B/Ca Reconstruction #----------------------------------------------------------------------- # World Data Center for Paleoclimatology, Boulder # and # NOAA Paleoclimatology Program #----------------------------------------------------------------------- # NOTE: Please cite Publication, and Online_Resource and date accessed when using these data. # If there is no publication information, please cite Investigators, Title, and Online_Resource and date accessed. # # # Online_Resource: https://www.ncdc.noaa.gov/paleo/study/16154 # # Online_Resource: http://www1.ncdc.noaa.gov/pub/data/paleo/contributions_by_author/tripati2011/tripati2011species.txt # # Description/Documentation lines begin with # # Data lines have no # # # Archive: Paleoceanography #-------------------- # Contribution_Date # Date: 2014-03-09 #-------------------- # Title # Study_Name: Atmospheric CO2 20 Million Year Foraminiferal B/Ca Reconstruction #-------------------- # Investigators # Investigators: Tripati, A.K.; Roberts, C.D.; Eagle, R.A.; Li, G. #-------------------- # Description_and_Notes # Description: Paleoatmospheric CO2 concentrations estimated from the boron/calcium ratio of planktonic foraminifera. # Samples from Deep Sea Drilling Project Site 588 and Ocean Drilling Program Site 806 were used to reconstruct pCO2 # values from the Miocene through Holocene (~20 to 0 Ma). Average, maximum, and minimum pCO2 estimates are calculated # for each time. #-------------------- # Publication # Authors: Aradhna K. Tripati, Christopher D. Roberts, Robert A. Eagle, Gaojun Li # Published_Date_or_Year: 2011-05-15 # Published_Title: A 20 million year record of planktic foraminiferal B/Ca ratios: Systematics and uncertainties in pCO2 reconstructions # Journal_Name: Geochimica et Cosmochimica Acta # Volume: 75 # Edition: # Issue: 10 # Pages: 2582-2610 # DOI: 10.1016/j.gca.2011.01.018 # Online_Resource: http://www.sciencedirect.com/science/article/pii/S0016703711000263 # Full_Citation: # Abstract: We use new and published data representing a 20 million long record to discuss the systematics of interpreting planktic foraminiferal B/Ca ratios. B/Ca-based reconstructions of seawater carbonate chemistry and atmospheric pCO2 assume that the incorporation of boron into foraminiferal tests can be empirically described by an apparent partition coefficient, KD=(B/CaCaCO3)/(BOH4-/HCO3- seawater) (Hemming and Hanson, 1992). It has also been proposed that there is a species-specific relationship between KD and temperature (Yu et al., 2007). As we discuss, although these relationships may be robust, there remain significant uncertainties over the controls on boron incorporation into foraminifera. It is difficult to be certain that the empirically defined correlation between temperature and KD is not simply a result of covariance of temperature and other hydrographic variables in the ocean, including carbonate system parameters. There is also some evidence that KD may be affected by solution [HCO3-]/[CO32-] ratios (i.e., pH), or by [CO32-]. In addition, the theoretical basis for the definition of KD and for a temperature control on KD is of debate. We also discuss the sensitivity of pCO2 reconstructions to different KD-temperature calibrations and seawater B/Ca. If a KD-temperature calibration is estimated using ice core pCO2 values between 0 and 200 ka, B/Ca ratios can be used to reasonably approximate atmospheric pCO2 between 200 and 800 ka; however, the absolute values of pCO2 calculated are sensitive to the choice of KD-temperature relationship. For older time periods, the absolute values of pCO2 are also dependent on the evolution of seawater B concentrations. However, we find that over the last 20 Ma, reconstructed changes in declining pCO2 across the Mid-Pleistocene Transition, Pliocene glacial intensification, and the Middle Miocene Climate Transition are supported by the B/Ca record even if a constant coretop KD is used, or different KD-temperature calibrations and models of seawater B evolution are applied to the data. The inferred influence of temperature on KD from coretop data therefore cannot itself explain the structure of a published pCO2 reconstruction (Tripati et al., 2009). We conclude the raw B/Ca data supports a coupling between pCO2 and climate over the past 20 Ma. Finally, we explore possible implications of B/Ca-based pCO2 estimates for the interpretation of other marine pCO2 proxies. #------------------ # Funding_Agency # Funding_Agency_Name: National Environmental Research Council (UK) # Grant: #------------------ # Funding_Agency # Funding_Agency_Name: University of California - Los Angeles (USA) # Grant: #------------------ # Funding_Agency # Funding_Agency_Name: Magdalene College (UK) # Grant: #------------------ # Site_Information # Site_Name: DSDP588 # Location: Ocean>Pacific Ocean>South Pacific Ocean # Country: # Northernmost_Latitude: -26.1117 # Southernmost_Latitude: -26.1117 # Easternmost_Longitude: 161.2267 # Westernmost_Longitude: 161.2267 # Elevation: -1533 m #------------------ # Site_Information # Site_Name: ODP806 # Location: Ocean>Pacific Ocean>North Pacific Ocean # Country: # Northernmost_Latitude: 0.3187 # Southernmost_Latitude: 0.3187 # Easternmost_Longitude: 159.361 # Westernmost_Longitude: 159.361 # Elevation: -2521 m #------------------ # Data_Collection # Collection_Name: Tripati2011species # Earliest_Year: 20000000 # Most_Recent_Year: 0 # Time_Unit: Cal. Year BP # Core_Length: m # Notes: #------------------ # Chronology: # # #---------------- # Variables # # Data variables follow (have no #) # Data line variables format: Variables list, one per line, shortname-tab-longname-tab-longname components (9 components: what, material, error, units, seasonality, archive, detail, method, C or N for Character or Numeric data) ## age_calMaBP Age, , , millions of years before present, , , , ,N ## notes-Species Notes Species, , , , , , , ,C ## BOH4-HCO3sw Seawater borate/bicarbonate, , , mol/mol, , , , ,N ## temp Temperature, , , deg C, , , , ,N ## sal Salinity, , , PSU, , , , ,N #---------------- # Data: # Data lines follow (have no #) # Data line format - tab-delimited text, variable short name as header # Missing Values: # Comparison of reconstruction for different species measured from same sample age_calMaBP notes-Species BOH4-HCO3sw temp sal 0.006 G. ruber 0.08864 29 34.5 0.006 G. sacculifer 0.07988 29 34.5 0.014 G. ruber 0.09731 27.1 36.8 0.014 G. sacculifer 0.10045 27 36.8 0.028 G. ruber 0.10054 26.4 35.2 0.028 G. sacculifer 0.10086 26.8 35.4 0.037 G. ruber 0.10244 26.8 35.5 0.037 G. sacculifer 0.09482 27.3 35.7 0.052 G. ruber 0.09676 27.1 36.2 0.052 G. sacculifer 0.10086 27.1 36.2 0.09 G. ruber 0.08885 27.7 34.9 0.09 G. sacculifer 0.09145 27.6 36.5 0.091 G. ruber 0.08319 28 35 0.091 G. sacculifer 0.0862 27.9 36.7 0.106 G. ruber 0.0837 29.7 36.1 0.106 G. sacculifer 0.08505 29.3 35.6 0.111 G. ruber 0.08017 29.7 36.2 0.111 G. sacculifer 0.09042 29.7 36.7 0.128 G. ruber 0.08995 27.5 34.8 0.128 G. sacculifer 0.0907 27.5 38.2 0.146 G. ruber 0.09463 26.5 35.7 0.146 G. sacculifer 0.09676 26.8 37.4 0.164 G. ruber 0.09519 26.5 35.9 0.164 G. sacculifer 0.09589 26.6 36 0.198 G. ruber 0.09639 28.5 35.7 0.198 G. sacculifer 0.08919 27.5 36.8 0.244 G. ruber 0.10096 26.8 36.2 0.244 G. sacculifer 0.09105 27.6 36.7 0.247 G. ruber 0.11043 27.4 36.4 0.247 G. sacculifer 0.09662 27.4 37 0.253 G. ruber 0.08822 27.9 36.1 0.253 G. sacculifer 0.08615 28.2 36.3 0.255 G. ruber 0.1146 27 36.1 0.255 G. sacculifer 0.09099 27.8 37 0.297 G. ruber 0.09283 27.7 34.7 0.297 G. sacculifer 0.08537 27.9 34.9 0.316 G. ruber 0.08733 29.5 36.5 0.316 G. sacculifer 0.08123 29.7 36.6 0.36 G. ruber 0.1021 26.5 35.8 0.36 G. sacculifer 0.09309 27.5 36.8 0.367 G. ruber 0.09526 25.9 34.4 0.367 G. sacculifer 0.08476 27.7 35.5 0.379 G. ruber 0.08791 26.7 36.1 0.379 G. sacculifer 0.09375 27.4 36.4 0.426 G. ruber 0.09516 26.1 37.1 0.426 G. sacculifer 0.09149 27.3 38.8 0.529 G. ruber 0.08412 28.1 36 0.529 G. sacculifer 0.09086 28.5 37.3 0.541 G. ruber 0.08997 26.9 35.7 0.541 G. sacculifer 0.09055 27.7 38 0.588 G. ruber 0.08463 28 35.9 0.588 G. sacculifer 0.09687 27.5 37.3 0.636 G. ruber 0.09616 26.8 36.8 0.636 G. sacculifer 0.09852 27.7 38.1 0.72 G. ruber 0.08788 26.8 36.2 0.72 G. sacculifer 0.09891 27.6 38 0.728 G. ruber 0.08849 26.7 35.9 0.728 G. sacculifer 0.0946 27.2 37.9 0.904 G. ruber 0.09145 26.4 36 0.904 G. sacculifer 0.11664 26.8 37.7 1.012 G. ruber 0.08693 26.5 34.9 1.012 G. sacculifer 0.09611 27.8 37.1 1.158 G. ruber 0.08551 28.1 36.2 1.158 G. sacculifer 0.08748 29 38 1.283 G. ruber 0.08334 27.9 35.5 1.283 G. sacculifer 0.08969 28.1 36.7 1.295 G. ruber 0.08591 27 35.9 1.295 G. sacculifer 0.09215 27.9 37 1.364 G. ruber 0.08181 27 35.3 1.364 G. sacculifer 0.09042 28.1 36 1.401 G. ruber 0.07125 29.3 37.9 1.401 G. sacculifer 0.08075 30 38 1.426 G. ruber 0.0842 28.2 37 1.426 G. sacculifer 0.09078 28.5 37.3 1.43 G. ruber 0.0996 27.9 36.7 1.43 G. sacculifer 0.08363 28.9 37.6 1.574 G. ruber 0.09277 27.1 36.8 1.574 G. sacculifer 0.09852 27.2 36.9 1.665 G. ruber 0.0837 26.9 36.6 1.665 G. sacculifer 0.09322 26.1 35.6 1.67 G. ruber 0.08584 27.2 36.4 1.67 G. sacculifer 0.09334 26.4 35.8 1.79 G. ruber 0.08775 27.7 37.5 1.79 G. sacculifer 0.0861 27.5 36.8 1.8 G. ruber 0.0836 27.4 37.4 1.8 G. sacculifer 0.08612 27.1 36.5 2.017 G. ruber 0.08402 28.4 37.4 2.017 G. sacculifer 0.07912 27.7 36.3 2.055 G. ruber 0.09092 27.1 36.5 2.055 G. sacculifer 0.08456 26.5 35.8 2.161 G. ruber 0.09444 26.9 36.2 2.161 G. sacculifer 0.09611 27.3 36.3 2.192 G. ruber 0.10059 26.7 35.9 2.192 G. sacculifer 0.09648 25.8 35.3 2.199 G. ruber 0.09016 27.7 36.7 2.199 G. sacculifer 0.08247 27.1 35.7 2.218 G. ruber 0.09475 27.5 37.4 2.218 G. sacculifer 0.09279 26.3 35.5 2.234 G. ruber 0.08534 28 36.5 2.234 G. sacculifer 0.09848 27.8 36.4 2.252 G. ruber 0.08167 27.7 36.9 2.252 G. sacculifer 0.08336 26.9 36.5 2.256 G. ruber 0.08752 27.7 35.8 2.256 G. sacculifer 0.09374 28 36 2.26 G. ruber 0.08276 28 36.4 2.26 G. sacculifer 0.10223 27.6 36.4 2.264 G. ruber 0.08902 28.1 35.1 2.264 G. sacculifer 0.08976 28 36.9 2.269 G. ruber 0.08881 27.7 36.7 2.269 G. sacculifer 0.09953 26.4 36 2.284 G. ruber 0.08812 27.6 35.8 2.284 G. sacculifer 0.09861 27.7 37.1 2.291 G. ruber 0.08961 27.6 37.1 2.291 G. sacculifer 0.09983 28.2 37 2.3 G. ruber 0.09369 27.3 36.4 2.3 G. sacculifer 0.09229 27.6 36.6 2.317 G. ruber 0.08401 28.2 36.9 2.317 G. sacculifer 0.08193 27.3 36.4 2.322 G. ruber 0.09649 27.9 36.6 2.322 G. sacculifer 0.08493 27.5 36.4 2.346 G. ruber 0.08533 28 37.4 2.346 G. sacculifer 0.08477 27.2 36.9 2.351 G. ruber 0.09899 26 37 2.351 G. sacculifer 0.09609 26.3 37.2 2.358 G. ruber 0.08602 26.8 37.9 2.358 G. sacculifer 0.09673 26.5 37.8 2.373 G. ruber 0.0972 26.7 37 2.373 G. sacculifer 0.09057 26.9 37 2.38 G. ruber 0.0864 27.6 36.7 2.38 G. sacculifer 0.09749 27 36.3 2.381 G. ruber 0.08235 28 36.9 2.381 G. sacculifer 0.10557 27 36.3 2.504 G. ruber 0.09208 27.7 36.5 2.504 G. sacculifer 0.11108 27.2 36.2 2.674 G. ruber 0.09099 27.6 35.9 2.674 G. sacculifer 0.10119 27.3 35.7 2.746 G. ruber 0.09707 27.6 36.3 2.746 G. sacculifer 0.10939 27 36 2.857 G. ruber 0.08898 27.2 35.8 2.857 G. sacculifer 0.13083 27.9 36.2 3.008 G. ruber 0.09515 27.8 36.4 3.008 G. sacculifer 0.10209 28 36.5 3.034 G. ruber 0.0899 27.9 36.4 3.034 G. sacculifer 0.09367 28.3 36.7 3.194 G. ruber 0.09265 27.8 37.7 3.194 G. sacculifer 0.0912 28.3 37.9 3.266 G. ruber 0.10192 27.8 36.4 3.266 G. sacculifer 0.09809 28.1 36.5 3.327 G. ruber 0.09093 27.9 36.6 3.327 G. sacculifer 0.09784 28 36.6 3.406 G. ruber 0.09021 28 36.6 3.406 G. sacculifer 0.08014 28 36.1 3.447 G. ruber 0.08391 27.7 36.2 3.447 G. sacculifer 0.08097 28.3 36.5