# Southern Mentawai Islands d18O and d13C Data and Indian Ocean Dipole reconstruction over the last millennium #---------------------------------------------------- # World Data Service for Paleoclimatology, Boulder # and # NOAA Paleoclimatology Program # National Centers for Environmental Information (NCEI) #---------------------------------------------------- # Template Version 4.0 # Encoding: UTF-8 # NOTE: Please cite original publication, NOAA Landing Page URL, dataset and publication DOIs (where available), and date accessed when using downloaded data. If there is no publication information, please cite investigator, study title, NOAA Landing Page URL, and date accessed. # # Description/Documentation lines begin with # # Data lines have no # # # NOAA_Landing_Page: https://www.ncei.noaa.gov/access/paleo-search/study/28451 # Landing_Page_Description: NOAA Landing Page of this file's parent study, which includes all study metadata. # # Study_Level_JSON_Metadata: https://www.ncei.noaa.gov/pub/data/metadata/published/paleo/json/noaa-coral-28451.json # Study_Level_JSON_Description: JSON metadata of this data file's parent study, which includes all study metadata. # # Data_Type: Corals and Sclerosponges # # Dataset_DOI: 10.25921/skaz-fm35 # # Science_Keywords: Sea Surface Temperature Reconstruction #-------------------- # Resource_Links # # Data_Download_Resource: https://www.ncei.noaa.gov/pub/data/paleo/coral/indian_ocean/abram2020/abram2020-smg01-a-4a-noaa.txt # Data_Download_Description: NOAA Template File; SMG01-A-4a d18O and d13C Data # #-------------------- # Contribution_Date # Date: 2020-03-02 #-------------------- # File_Last_Modified_Date # Date: 2024-08-18 #-------------------- # Title # Study_Name: Southern Mentawai Islands d18O and d13C Data and Indian Ocean Dipole reconstruction over the last millennium #-------------------- # Investigators # Investigators: Abram, N.J.(https://orcid.org/0000-0003-1246-2344); Wright, N.; Ellis, B.(https://orcid.org/0000-0002-4662-1115); Dixon, B.; Wurtzel, J.B.(https://orcid.org/0000-0002-5285-4492); England, M.H.; Ummenhofer, C.C.(https://orcid.org/0000-0002-9163-3967); Pilibosian, B.; Cahyarini, S.Y.(https://orcid.org/0000-0001-8378-0716); Yu, T.-L.; Shen, C.-C.(https://orcid.org/0000-0003-2833-2771); Cheng, H.(https://orcid.org/0000-0002-5305-9458); Edwards, R.L.(https://orcid.org/0000-0002-7027-5881); Heslop, D.(https://orcid.org/0000-0001-8245-0555) #-------------------- # Description_Notes_and_Keywords # Description: The coral IOD reconstruction data was compiled from one Porites coral record published in Abram et al. (2015), one Porites microatoll coral record published in Gagan et al. (2015), and seven Porites coral records published in this study. Note that this study extends the length of the record originally published in Abram et al. (2015). This study also adjusts the age model of the record originally published in Gagan et al. (2015) in order to reconstruct a physically plausible seasonal timing for positive IOD events that is consistent with the age model methods used for the other coral records used in the compilation. The coral IOD reconstruction compiled in this study also includes the coral Dipole Mode Index published in Abram et al. (2008), and derived from Porites coral data originally published in Abram et al. (2008), Charles et al. (1997), Charles et al. (2003), and Pfeiffer and Dullo (2006). For further details please refer to the methods published within Abram et al (2020, Nature). The d13C data from Si94-A-6 in Gagan et al (2015) was removed in July 2020 and can be found at: https://doi.org/10.25921/tkys-wd90. Provided Keywords: sea surface temperature, coral, Indian Ocean Dipole, last millennium #-------------------- # Publication # Authors: Abram, Nerilie J., Nicky M. Wright, Bethany Ellis, Bronwyn C. Dixon, Jennifer B. Wurtzel, Matthew H. England, Caroline C. Ummenhofer, Belle Pilibosian, Sri Yudawati Cahyarini, Tsai-Luen Yu, Chuan-Chou Shen, Hai Cheng, R. Lawrence Edwards, and David Heslop # Journal_Name: Nature # Published_Title: Coupling of Indo-Pacific Climate Variability over the Last Millennium # Published_Date_or_Year: 2020 # Volume: 579 # Pages: 385–392 # Issue: # Report_Number: # DOI: 10.1038/s41586-020-2084-4 # Full_Citation: # Abstract: The Indian Ocean Dipole (IOD) affects climate and rainfall across the world, and most severely in nations surrounding the Indian Ocean. The frequency and intensity of positive IOD events increased during the twentieth century and may continue to intensify in a warming world. However, confidence in predictions of future IOD change is limited by known biases in model representations of the IOD and the lack of information on natural IOD variability before anthropogenic climate change. Here we use precisely dated and highly resolved coral records from the eastern equatorial Indian Ocean, where the signature of IOD variability is strong and unambiguous, to produce a semi-continuous reconstruction of IOD variability that covers five centuries of the last millennium. Our reconstruction demonstrates that extreme positive IOD events were rare before 1960. However, the most extreme event on record (1997) is not unprecedented, because at least one event that was approximately 27 to 42 per cent larger occurred naturally during the seventeenth century. We further show that a persistent, tight coupling existed between the variability of the IOD and the El Niño/Southern Oscillation during the last millennium. Indo-Pacific coupling was characterized by weak interannual variability before approximately 1590, which probably altered teleconnection patterns, and by anomalously strong variability during the seventeenth century, which was associated with societal upheaval in tropical Asia. A tendency towards clustering of positive IOD events is evident in our reconstruction, which-together with the identification of extreme IOD variability and persistent tropical Indo-Pacific climate coupling-may have implications for improving seasonal and decadal predictions and managing the climate risks of future IOD variability. #-------------------- # Authors: Gagan, Michael K., Sosdian, Sindia M., Scott-Gagan, Heather, Sieh, Kerry, Hantoro, Wahyoe S., Natawidjaja, Danny H., Briggs, Richard W., Suwargadi, Bambang W. and Rifai, Hamdi # Journal_Name: Earth and Planetary Science Letters # Published_Title: Coral 13C/12C records of vertical seafloor displacement during megathrust earthquakes west of Sumatra # Published_Date_or_Year: 2015 # Volume: 432 # Pages: 461-471 # Issue: # Report_Number: # DOI: 10.1016/j.epsl.2015.10.002 # Full_Citation: # Abstract: The recent surge of megathrust earthquakes and tsunami disasters has highlighted the need for a comprehensive understanding of earthquake cycles along convergent plate boundaries. Space geodesy has been used to document recent crustal deformation patterns with unprecedented precision, however the production of long paleogeodetic records of vertical seafloor motion is still a major challenge. Here we show that carbon isotope ratios (d13C) in the skeletons of massive Porites corals from west Sumatra record abrupt changes in light exposure resulting from coseismic seafloor displacements. Validation of the method is based on the coral d13C response to uplift (and subsidence) produced by the March 2005 Mw 8.6 Nias-Simeulue earthquake, and uplift further south around Sipora Island during a M ~8.4 megathrust earthquake in February 1797. At Nias, the average step-change in coral d13C was 0.6 ± 0.1‰/m for coseismic displacements of +1.8 m and -0.4 m in 2005. At Sipora, a distinct change in Porites microatoll growth morphology marks coseismic uplift of 0.7 m in 1797. In this shallow water setting, with a steep light attenuation gradient, the step-change in microatoll d13C is 2.3‰/m, nearly four times greater than for the Nias Porites. Considering the natural variability in coral skeletal d13C, we show that the lower detection limit of the method is around 0.2 m of vertical seafloor motion. Analysis of vertical displacement for well-documented earthquakes suggests this sensitivity equates to shallow events exceeding Mw ~7.2 in central megathrust and back-arc thrust fault settings. Our findings indicate that the coral 13C/12C paleogeodesy technique could be applied to convergent tectonic margins throughout the tropical western Pacific and eastern Indian oceans, which host prolific coral reefs, and some of the world's greatest earthquake catastrophes. While our focus here is the link between coral d13C, light exposure and coseismic crustal deformation, the same principles could be used to characterize interseismic strain during earthquake cycles over the last several millennia. #-------------------- # Authors: Nerilie J. Abram, Bronwyn C. Dixon, Madelaine G. Rosevear, Benjamin Plunkett, Michael K. Gagan, Wahyoe S. Hantoro and Steven J. Phipps # Journal_Name: Paleoceanography # Published_Title: Optimized coral reconstructions of the Indian Ocean Dipole: An assessment of location and length considerations # Published_Date_or_Year: 2015 # Volume: 30 # Pages: 1391-1405 # Issue: # Report_Number: # DOI: 10.1002/2015PA002810 # Full_Citation: # Abstract: The Indian Ocean Dipole (IOD; or Indian Ocean Zonal Mode) is a coupled ocean-atmosphere climate oscillation that has profound impacts on rainfall distribution across the Indian Ocean region. Instrumental records provide a reliable representation of IOD behaviour since 1958, while coral reconstructions currently extend the IOD history back to 1846. Large fluctuations in the number and intensity of positive IOD events over time are evident in these records, but it is unclear to what extent this represents multidecadal modulation of the IOD or an anthropogenically-forced change in IOD behaviour. In this study we explore the suitability of coral records from single-site locations in the equatorial Indian Ocean for capturing information about the occurrence and magnitude of positive IOD (pIOD) events. We find that the optimum location for coral reconstructions of the IOD occurs in the southeastern equatorial Indian Ocean, along the coast of Java and Sumatra between ~3-7S. Here the strong ocean cooling and atmospheric drying during pIOD events are unambiguously recorded in coral oxygen isotope records, which capture up to 50% of IOD variance. Unforced experiments with coupled climate models suggest that potential biases in coral estimates of pIOD frequency are skewed towards overestimating pIOD recurrence intervals, and become larger with shorter reconstruction windows and longer pIOD recurrence times. Model output also supports the assumption of stationarity in sea surface temperature relationships in the optimum IOD location that is necessary for paleoclimate reconstructions. This study provides a targeted framework for the future generation of paleoclimate records, including optimised coral reconstructions of past IOD variability. #-------------------- # Authors: Abram, N.J., M.K. Gagan, J.E. Cole, W.S. Hantoro, and M. Mudelsee # Journal_Name: Nature Geoscience # Published_Title: Recent intensification of tropical climate variability in the Indian Ocean # Published_Date_or_Year: 2008 # Volume: 1 # Pages: 849-853 # Issue: 12 # Report_Number: # DOI: 10.1038/ngeo357 # Full_Citation: # Abstract: The interplay of the El Nino Southern Oscillation, Asian monsoon and Indian Ocean Dipole (IOD) drives climatic extremes in and around the Indian Ocean. Historical and proxy records reveal changes in the behaviour of the El Nino Southern Oscillation and the Asian monsoon over recent decades. However, reliable instrumental records of the IOD cover only the past 50 years, and there is no consensus on long-term variability of the IOD or its possible response to greenhouse gas forcing. Here we use a suite of coral oxygen-isotope records to reconstruct a basin-wide index of IOD behaviour since AD 1846. Our record reveals an increase in the frequency and strength of IOD events during the twentieth century, which is associated with enhanced seasonal upwelling in the eastern Indian Ocean. Although the El Nino Southern Oscillation has historically influenced the variability of both the IOD and the Asian monsoon, we find that the recent intensification of the IOD coincides with the development of direct, positive IOD-monsoon feedbacks. We suggest that projected greenhouse warming may lead to a redistribution of rainfall across the Indian Ocean and a growing interdependence between the IOD and Asian monsoon precipitation variability. #-------------------- # Authors: Christopher D. Charles, Kim Cobb, Michael D. Moore, Richard G. Fairbanks # Journal_Name: Marine Geology # Published_Title: Monsoon-tropical ocean interaction in a network of coral records spanning the 20th century # Published_Date_or_Year: 2003 # Volume: 201 # Pages: 207-222 # Issue: 1-3 # Report_Number: # DOI: 10.1016/S0025-3227(03)00217-2 # Full_Citation: # Abstract: The 20th century evolution of basin-wide gradients in surface ocean properties provides one essential test for recent models of the interaction between the Asian monsoon and the tropical ocean, because various feedback mechanisms should result in characteristic regional patterns of variability. Although the instrumental record of climate variability in the tropics is essentially limited to the last few decades, the stable isotopic composition of living corals provides an effective means for extending the instrumental observations. Here we present two coral isotopic records from the Indonesian Maritime Continent, and we use these records with other previously published records to describe: (i) the relationship between western Pacific and central Pacific climate variability over the past century, with special emphasis on the biennial band; and (ii) the strength of the west-east 'Indian Ocean Dipole'. We find that the amplitude of the biennial cycle in the Pacific did not vary inversely with the strength of ENSO (El Nino Southern Oscillation), as might be expected from some models of monsoonal feedback on the central Pacific. Instead, the biennial variability was modulated on decadal timescales throughout much of the Pacific. We also show that the zonal oxygen isotopic gradient in the Indian Ocean coral records was significantly correlated with central Pacific sea surface temperature on a variety of timescales. Thus, it is likely that this 'coral dipole' was a product of strong ENSO-like teleconnections over the Indian Ocean, as opposed to being the result of unique Indian Ocean or monsoonal dynamics. #-------------------- # Authors: Charles, C.D., D.E.Hunter, and R.G.Fairbanks # Journal_Name: Science # Published_Title: Interaction Between the ENSO and the Asian Monsoon in a Coral Record of Tropical Climate # Published_Date_or_Year: 1997 # Volume: 277 # Pages: 925-928 # Issue: 5328 # Report_Number: # DOI: 10.1126/science.277.5328.925 # Full_Citation: # Abstract: The oxygen isotopic composition of a banded coral from the western equatorial Indian Ocean provides a 150-year-long history of the relation between the El Niño–Southern Oscillation (ENSO) phenomenon and the Asian monsoon. Interannual cycles in the coral time series were found to correlate with Pacific coral and instrumental climate records, suggesting a consistent linkage across ocean basins, despite the changing frequency and amplitude of the ENSO. However, decadal variability that is characteristic of the monsoon system also dominates the coral record, which implies important interactions between tropical and midlatitude climate variability. One prominent manifestation of this interaction is the strong amplitude modulation of the quasi-biennial cycle. #-------------------- # Authors: Pfeiffer, M.; Dullo, W.C # Journal_Name: Quaternary Science Reviews # Published_Title: Monsoon-induced cooling of the western equatorial Indian Ocean as recorded in coral oxygen isotope records from the Seychelles covering the period of 1840-1994 AD # Published_Date_or_Year: 2006 # Volume: 25 # Pages: 993-1009 # Issue: 9-10 # Report_Number: # DOI: 10.1016/j.quascirev.2005.11.005 # Full_Citation: # Abstract: We have developed a new, bimonthly resolved coral δ18O time series from the Seychelles (55°E, 4°S). Our coral time series covers the period of 1840–1994 AD and shows stable correlations with regional sea surface temperatures over the past 50 years. The strength of the proxy-climate relationship depends on the annual cycle of the Asian monsoon. Seasonal correlation patterns suggest that the coral primarily records the boreal summer cooling in the western Indian Ocean and Arabian Sea, which results from wind-induced mixing and evaporation during the SW monsoon season. We have combined our coral time series with an existing 150-year long coral record from the Seychelles to strengthen the climatic signals recorded in the two cores. This new coral index shows a strong correlation with historical surface temperatures from the Arabian Sea and India, suggesting that the corals can be used to reconstruct regional temperature trends in pre-instrumental times. The coral index also shows a significant correlation with the Niño 3.4 index, which captures the ENSO phenomenon centred in the tropical Pacific. Cross-spectral analysis confirms that the coral index and Niño 3.4 are coherent at decadal periods, supporting the notion that decadal El Niño-like variability influences the Indian Ocean. #-------------------- # Funding_Agency # Funding_Agency_Name: Australian Research Council # Grant: DP110101161, DP1401029, FT160100029, CE170100023 #-------------------- # Site_Information # Site_Name: SMG01-A-4, Saumang Island # Location: Sumatra # Northernmost_Latitude: -3.126111 # Southernmost_Latitude: -3.126111 # Easternmost_Longitude: 100.309778 # Westernmost_Longitude: 100.309778 # Elevation_m: #-------------------- # Data_Collection # Collection_Name: SMG01-A-4a Istotopes Abram2020 # First_Year: 1256 # Last_Year: 1270 # Time_Unit: CE # Core_Length_m: # Parameter_Keywords: carbon isotopes, oxygen isotopes # Notes: #-------------------- # Chronology_Information # Chronology: Uranium-Thorium # Chronology_Download_Resource: https://www.ncei.noaa.gov/pub/data/paleo/templates/noaa-wds-paleo-uth-terms.csv # Chronology_Download_Description: Uranium-Thorium terms and definitions. # Chronology_Notes: The notes field contains lab where analysis was undertaken. # Rejection_Rationale: # 238U_Decay_Constant: # 234U_Decay_Constant: # 230Th_Decay_Constant: # Initial_230Th/232Th: # Initial_230Th/232Th_Method: # Age_Model_Method: # Missing_Values: na # Chronology_Table: # samp_id 238U_ppb 238U_2s_ppb 232Th_ppt 232Th_2s_ppt d234U_meas_permil d234U_meas_2s_permil 230Th_238U_act 230Th_238U_act_2s 230Th_232Th_atom_ppm 230Th_232Th_atom_2s_ppm age_uncorr_BM age_uncorr_2s_yr age_corr_BM age_corr_2s_yr age_corr_BP1950 age_corr_2s_yr age_corr_CE age_corr_2s_yr d234U_init_permil d234U_init_2s_permil meas_yr notes age_model_BP1950 # SMG01-A-4a-17cm 2444.64464846724 4.38436353922673 797.244865367061 3.19760690662686 146.038315088455 2.14972164681373 0.008086120504396 6.70934262435869E-05 408.818810462947 3.69560321816314 772.012337063403 6.59000308715546 761.287429678476 8.79409232658838 699.287429678476 8.79409232658838 1251 8.79409232658838 146.353726522616 2.1543668616517 May 2017 HISPEC, NTU 1259 #-------------------- # Variables # PaST_Thesaurus_Download_Resource: https://www.ncei.noaa.gov/access/paleo-search/skos/past-thesaurus.rdf # PaST_Thesaurus_Download_Description: Paleoenvironmental Standard Terms (PaST) Thesaurus terms, definitions, and relationships in SKOS format. # # Data variables follow that are preceded by '##' in columns one and two. # Variables list, one per line, shortname-tab-var components: what, material, error, units, seasonality, data type, detail, method, C or N for Character or Numeric data) # ## Year age,,,year Common Era,,corals and sclerosponges,,,N,year CE (common era) ## d18O delta 18O,Porites sp.,,per mil,,corals and sclerosponges,,isotope ratio mass spectrometry,N,Monthly-resoution isotope data for coral SMG01-A-4a. See methods text in publication for measurement uncertainty details ## d18O-filter delta 18O,Porites sp.,,per mil,,corals and sclerosponges,filtered,,N,Average filter of coral d18O variability longer than 7-years ## d18O-anom delta 18O,Porites sp.,,per mil,,corals and sclerosponges,anomalized,,N,Coral d18O anomaly calculated by removing filter of variability longer than 7 years ## d18O-norm delta 18O,Porites sp.,,dimensionless,,corals and sclerosponges,normalized,,N,Coral d18O anomaly normalised relative to 1961-1990 interval of modern coral (TT01-A-1b) ## d13C delta 13C,Porites sp.,,per mil,,corals and sclerosponges,,isotope ratio mass spectrometry,N,Monthly-resoution isotope data for coral SMG01-A-4a. See methods text in publication for measurement uncertainty details #-------------------- # Data: # Data lines follow (have no #) # Data line format - tab-delimited text, variable short name as header # Missing_Values: NaN Year d18O d18O-filter d18O-anom d18O-norm d13C 1256.708333 -5.86 -5.91917 0.059166 0.355243 -2.02 1256.791667 -5.77866667 -5.91694 0.138278 0.830242 -2.00566667 1256.875 -5.842 -5.91462 0.072619 0.436014 -1.866 1256.958333 -5.795 -5.91219 0.117188 0.703615 -1.885 1257.041667 -5.91733333 -5.90965 -0.00768 -0.04611 -1.774 1257.125 -5.93333333 -5.90702 -0.02632 -0.15801 -1.96 1257.208333 -5.984 -5.90428 -0.07972 -0.47866 -1.972 1257.291667 -5.98533333 -5.90144 -0.08389 -0.50371 -1.90866667 1257.375 -5.99133333 -5.8985 -0.09283 -0.55736 -1.94633333 1257.458333 -5.981 -5.89547 -0.08553 -0.51353 -1.87433333 1257.541667 -5.914 -5.89234 -0.02166 -0.13003 -1.86 1257.625 -5.882 -5.88912 0.007123 0.042769 -1.778 1257.708333 -5.828 -5.88581 0.057813 0.347116 -1.74133333 1257.791667 -5.79066667 -5.88241 0.091747 0.550864 -1.70066667 1257.875 -5.88133333 -5.87893 -0.0024 -0.01443 -1.902 1257.958333 -5.844 -5.87536 0.031364 0.188316 -1.89 1258.041667 -5.94 -5.87172 -0.06828 -0.40996 -2.016 1258.125 -5.94933333 -5.868 -0.08133 -0.48832 -2.14266667 1258.208333 -5.889 -5.86422 -0.02478 -0.14881 -2.27633333 1258.291667 -5.93266667 -5.86036 -0.0723 -0.43412 -2.286 1258.375 -5.94333333 -5.85645 -0.08688 -0.52166 -2.22033333 1258.458333 -6.04 -5.85248 -0.18752 -1.12589 -2.23 1258.541667 -6.024 -5.84846 -0.17554 -1.05396 -2.19 1258.625 -5.93533333 -5.84439 -0.09094 -0.54601 -2.17066667 1258.708333 -5.724 -5.84028 0.116285 0.698189 -2.113 1258.791667 -5.71466667 -5.83613 0.121468 0.729312 -2.17133333 1258.875 -5.82666667 -5.83195 0.005282 0.031715 -2.02333333 1258.958333 -5.87333333 -5.82773 -0.0456 -0.27381 -1.695 1259.041667 -5.91666667 -5.82348 -0.09318 -0.55949 -1.84166667 1259.125 -5.93903226 -5.81921 -0.11982 -0.71944 -1.90741935 1259.208333 -5.95482759 -5.81491 -0.13992 -0.8401 -1.70310345 1259.291667 -5.952 -5.81058 -0.14142 -0.84909 -1.537 1259.375 -5.90225806 -5.80623 -0.09603 -0.57657 -1.5183871 1259.458333 -5.90551724 -5.80184 -0.10367 -0.62246 -1.65241379 1259.541667 -5.84633333 -5.79742 -0.04891 -0.29368 -1.64133333 1259.625 -5.80516129 -5.79294 -0.01222 -0.07335 -1.41225806 1259.708333 -5.69655172 -5.7884 0.091849 0.551472 -1.22896552 1259.791667 -5.578 -5.78377 0.205768 1.235459 -1.126 1259.875 -5.63 -5.77902 0.149025 0.894765 -1.23419355 1259.958333 -5.55551724 -5.77415 0.218638 1.312731 -1.39448276 1260.041667 -5.583 -5.76917 0.186166 1.117765 -1.607 1260.125 -5.79241935 -5.76412 -0.0283 -0.16994 -1.85048387 1260.208333 -5.74172414 -5.75975 0.018026 0.10823 -1.75258621 1260.291667 -5.756 -5.75611 0.000107 0.00064 -1.586 1260.375 -5.7416129 -5.7528 0.011186 0.067159 -1.66774194 1260.458333 -5.7662069 -5.74984 -0.01637 -0.0983 -1.45655172 1260.541667 -5.67 -5.74722 0.077221 0.463647 -1.33066667 1260.625 -5.64741935 -5.74496 0.097539 0.585636 -1.29580645 1260.708333 -5.5862069 -5.74305 0.156839 0.941686 -1.29068966 1260.791667 -5.581 -5.74149 0.160486 0.963582 -1.46233333 1260.875 -5.67967742 -5.74028 0.0606 0.36385 -1.46677419 1260.958333 -5.80482759 -5.73942 -0.06541 -0.39273 -1.68448276 1261.041667 -5.92133333 -5.7389 -0.18243 -1.09535 -1.93133333 1261.125 -5.89677419 -5.73871 -0.15806 -0.94903 -1.97967742 1261.208333 -5.76689655 -5.73883 -0.02807 -0.16853 -2.02172414 1261.291667 -5.69966667 -5.73921 0.039546 0.237441 -1.78533333 1261.375 -5.73677419 -5.73982 0.003041 0.018259 -1.81290323 1261.458333 -5.68758621 -5.74057 0.052987 0.318142 -1.94137931 1261.541667 -5.654 -5.74142 0.087421 0.524887 -1.89133333 1261.625 -5.64225806 -5.74231 0.100048 0.600702 -1.90419355 1261.708333 -5.6362069 -5.74319 0.106988 0.642369 -1.84103448 1261.791667 -5.60033333 -5.74407 0.143738 0.863022 -1.74966667 1261.875 -5.72193548 -5.74494 0.023005 0.138128 -1.63225806 1261.958333 -5.58758621 -5.74583 0.158243 0.950112 -1.5362069 1262.041667 -5.699 -5.74677 0.047774 0.286842 -1.49 1262.125 -5.73645161 -5.74782 0.011369 0.068259 -1.72548387 1262.208333 -5.72034483 -5.74901 0.028664 0.172103 -2.05517241 1262.291667 -5.97833333 -5.75038 -0.22796 -1.36868 -1.96033333 1262.375 -6.12580645 -5.75196 -0.37384 -2.2446 -2.00419355 1262.458333 -6.06689655 -5.75381 -0.31309 -1.87982 -2.18551724 1262.541667 -5.91366667 -5.75594 -0.15772 -0.94699 -2.12533333 1262.625 -5.91645161 -5.75838 -0.15807 -0.94908 -2.20451613 1262.708333 -5.88103448 -5.76112 -0.11991 -0.71998 -2.09586207 1262.791667 -5.725 -5.76415 0.039152 0.235073 -1.91566667 1262.875 -5.71032258 -5.76746 0.057142 0.34309 -1.68064516 1262.958333 -5.74827586 -5.77105 0.022772 0.136724 -1.42413793 1263.041667 -5.73733333 -5.77489 0.037555 0.225483 -1.47933333 1263.125 -5.78645161 -5.77897 -0.00748 -0.04489 -1.54741935 1263.208333 -5.75103448 -5.78329 0.032255 0.193666 -1.78862069 1263.291667 -5.71733333 -5.78781 0.070473 0.423132 -1.75266667 1263.375 -5.75 -5.7925 0.042498 0.255163 -1.82741935 1263.458333 -5.86310345 -5.79734 -0.06576 -0.39486 -2.51137931 1263.541667 -5.78266667 -5.80231 0.01964 0.117922 -2.39866667 1263.625 -5.7 -5.80737 0.107372 0.644679 -2.3 1263.708333 -5.626 -5.81251 0.186506 1.119806 -2.42733333 1263.791667 -5.592 -5.81768 0.225679 1.355006 -2.338 1263.875 -5.73933333 -5.82287 0.083539 0.501582 -2.16733333 1263.958333 -5.72466667 -5.82808 0.103412 0.620898 -2.14066667 1264.041667 -5.741 -5.83329 0.092291 0.554128 -1.99633333 1264.125 -5.694 -5.83851 0.144509 0.867653 -1.92433333 1264.208333 -5.725 -5.84373 0.118733 0.712891 -1.72 1264.291667 -5.65 -5.84897 0.198967 1.194629 -1.57066667 1264.375 -5.66033333 -5.85422 0.193886 1.164122 -1.592 1264.458333 -5.72466667 -5.8595 0.134836 0.809576 -1.49666667 1264.541667 -5.65 -5.86483 0.214829 1.289867 -1.94 1264.625 -5.83933333 -5.87021 0.030874 0.185371 -2.24333333 1264.708333 -6.124 -5.87564 -0.24836 -1.49122 -2.15733333 1264.791667 -6.27266667 -5.8811 -0.39156 -2.351 -2.04133333 1264.875 -6.36 -5.88659 -0.47341 -2.8424 -2.011 1264.958333 -6.19333333 -5.89208 -0.30126 -1.80878 -1.89133333 1265.041667 -6.15566667 -5.89752 -0.25815 -1.54996 -2.02433333 1265.125 -6.10466667 -5.90287 -0.2018 -1.21161 -1.97333333 1265.208333 -6.1 -5.90809 -0.19191 -1.15225 -1.858 1265.291667 -5.98866667 -5.91313 -0.07553 -0.45352 -2.08966667 1265.375 -5.98266667 -5.91796 -0.06471 -0.38853 -2.086 1265.458333 -5.938 -5.92252 -0.01548 -0.09295 -1.97566667 1265.541667 -5.951 -5.92677 -0.02423 -0.1455 -1.94533333 1265.625 -5.84066667 -5.93063 0.089961 0.540141 -1.884 1265.708333 -5.72433333 -5.93403 0.209693 1.259025 -1.76533333 1265.791667 -5.66533333 -5.93689 0.27156 1.630487 -1.96533333 1265.875 -5.75066667 -5.93919 0.188522 1.131912 -2.08866667 1265.958333 -6.00266667 -5.94089 -0.06178 -0.37093 -2.074 1266.041667 -6.204 -5.94198 -0.26202 -1.57321 -2.46533333 1266.125 -6.14666667 -5.94246 -0.20421 -1.22608 -2.32266667 1266.208333 -6.00166667 -5.94234 -0.05933 -0.35623 -2.433 1266.291667 -6.06266667 -5.94161 -0.12106 -0.72684 -2.72866667 1266.375 -6.07533333 -5.9403 -0.13503 -0.81076 -2.178 1266.458333 -5.86033333 -5.93844 0.078102 0.468934 -1.689 1266.541667 -6.044 -5.93605 -0.10795 -0.64817 -1.98266667 1266.625 -6.1 -5.93317 -0.16683 -1.00167 -1.888 1266.708333 -5.91066667 -5.92985 0.019183 0.115179 -1.884 1266.791667 -5.81533333 -5.92613 0.110799 0.665253 -1.633 1266.875 -5.87933333 -5.92209 0.042752 0.25669 -1.65233333 1266.958333 -6.05866667 -5.91723 -0.14144 -0.8492 -1.94333333 1267.041667 -6.283 -5.91251 -0.37049 -2.22447 -2.17 1267.125 -6.136 -5.90798 -0.22802 -1.36907 -2.513 1267.208333 -6.01466667 -5.90363 -0.11104 -0.66669 -1.826 1267.291667 -5.94133333 -5.89943 -0.0419 -0.25159 -1.91333333 1267.375 -5.89333333 -5.89535 0.002018 0.012114 -1.70666667 1267.458333 -5.84666667 -5.89136 0.044694 0.268349 -1.43066667 1267.541667 -5.74633333 -5.88744 0.141103 0.847203 -1.716 1267.625 -5.70733333 -5.88356 0.176228 1.058098 -1.44666667 1267.708333 -5.68133333 -5.87972 0.19839 1.19116 -1.50133333 1267.791667 -5.69466667 -5.87591 0.181247 1.088233 -1.86733333 1267.875 -5.81766667 -5.87213 0.054462 0.326997 -2.163 1267.958333 -5.92733333 -5.86837 -0.05897 -0.35405 -2.02666667 1268.041667 -5.89129032 -5.86462 -0.02667 -0.16012 -2.15903226 1268.125 -5.91793103 -5.8609 -0.05703 -0.34243 -2.7837931 1268.208333 -5.7925 -5.8572 0.064697 0.388451 -2.17583333 1268.291667 -5.91548387 -5.85352 -0.06197 -0.37206 -2.28935484 1268.375 -5.81689655 -5.84986 0.03296 0.197898 -1.92724138 1268.458333 -5.774 -5.84622 0.072221 0.433625 -1.617 1268.541667 -5.70032258 -5.84261 0.142287 0.854314 -2.04387097 1268.625 -5.49275862 -5.83903 0.346267 2.079038 -1.84068966 1268.708333 -5.43133333 -5.83547 0.404137 2.426499 -1.67333333 1268.791667 -5.40032258 -5.83195 0.431625 2.591538 -1.48854839 1268.875 -5.61 -5.82846 0.218459 1.311661 -1.47551724 1268.958333 -5.85933333 -5.82501 -0.03432 -0.20608 -1.75666667 1269.041667 -6.09483871 -5.8216 -0.27324 -1.64054 -2.28258065 1269.125 -5.95896552 -5.81824 -0.14072 -0.84492 -2.2037931 1269.208333 -5.707 -5.81493 0.107929 0.648023 -2.019 1269.291667 -5.89419355 -5.81167 -0.08253 -0.4955 -2.10225806 1269.375 -5.64 -5.80846 0.168456 1.011436 -2.06551724 1269.458333 -5.77066667 -5.8053 0.034633 0.207941 -2.325 1269.541667 -5.76612903 -5.8022 0.036069 0.216565 -1.91064516 1269.625 -5.78344828 -5.79915 0.015706 0.094298 -1.55551724 1269.708333 -5.66166667 -5.79617 0.134501 0.807562 -1.41533333 1269.791667 -5.5683871 -5.79324 0.224853 1.350052 -1.64129032 1269.875 -5.81275862 -5.79037 -0.02238 -0.1344 -2.14 1269.958333 -5.77466667 -5.78757 0.012904 0.077478 -2.164 1270.041667 -5.83806452 -5.78483 -0.05323 -0.31962 -2.30387097 1270.125 -5.83241379 -5.78216 -0.05026 -0.30175 -2.28172414 1270.208333 -5.78666667 -5.77955 -0.00712 -0.04274 -2.002 1270.291667 -5.71366667 -5.77701 0.06334 0.380305 -1.68033333