Little Park - USLPK001 Additional Site Information Peter Z. Fulé, Joseph E. Crouse, Thomas A. Heinlein, Margaret M. Moore, W. Wallace Covington Dating Method: Crossdated Sample Storage Location: Northern Arizona University (contact Pete.Fulenau.edu) Reference: Fulé, P.Z., J.E. Crouse, T.A. Heinlein, M.M. Moore, W.W. Covington, and G. Verkamp. 2003. Mixed-severity fire regime in a high-elevation forest of Grand Canyon, Arizona, USA. Landscape Ecology 18:465-486. Abstract: Fire regime characteristics of high-elevation forests on the North Rim of the Grand Canyon, Arizona, were reconstructed from fire scar analysis, remote sensing, tree age, and forest structure measurements, a first attempt at detailed reconstruction of the transition from surface to stand-replacing fire patterns in the Southwest. Tree densities and fire-/non-fire-initiated groups were highly mixed over the landscape, so distinct fire-created stands could not be delineated from satellite imagery or the oldest available aerial photos. Surface fires were common from 1700 to 1879 in the 4,400 ha site, especially on S and W aspects. Fire dates frequently coincided with fire dates measured at study sites at lower elevation, suggesting that pre-1880 fire sizes may have been very large. Large fires, those scarring 25% or more of the sample trees, were relatively infrequent, averaging 31 years between burns. Four of the five major regional fire years occurred in the 1700s, followed by a 94-year gap until 1879. Fires typically occurred in significantly dry years (Palmer Drought Stress Index), with severe drought in major regional fire years. Currently the forest is predominantly spruce-fir, mixed conifer, and aspen. In contrast, dendroecological reconstruction of past forest structure showed that the forest in 1880 was very open, corresponding closely with historical (1910) accounts of severe fires leaving partially denuded landscapes. Age structure and species composition were used to classify sampling points into fire-initiated and non-fire-initiated groups. Tree groups on nearly 60% of the plots were fire-initiated; the oldest such groups appeared to have originated after severe fires in 1782 or 1785. In 1880, all fire-initiated groups were less than 100 years old and nearly 25% of the groups were less than 20 years old. Non-fire-initiated groups were significantly older (oldest 262 years in 1880), dominated by ponderosa pine, Douglas-fir, or white fir, and occurred preferentially on S and W slopes. The mixed-severity fire regime, transitioning from lower-elevation surface fires to mixed surface and stand-replacing fire at higher elevations, appeared not to have been stable over the temporal and spatial scales of this study. Information about historical fire regime and forest structure is valuable for managers but the information is probably less specific and stable for high-elevation forests than for low-elevation ponderosa pine forests. Fire History Graphs: Fire History Graphs illustrate specific years when fires occurred and how many trees were scarred. They are available in both PDF and PNG formats. The graphs consist of 2 parts, both of which show the X axis (time line) at the bottom with the earliest year of information on the left and the latest on the right. The Fire Index Plot is the topmost plot, and shows two variables: sample depth (the number of recording trees in each year) as a blue line along the left Y axis, compared with the percent trees scarred shown as gray bars along the right Y axis. Below, the Fire Chronology Plot consists of horizontal lines representing injuries by year on individual sampled trees. Symbols are overlain that denote the years containing the dendrochronologically-dated fire scars or injuries. The sample ID of each tree is displayed to the right of each line. The Composite Axis below represents the composite information from all individual series. The symbols used to represent the fire scars or injuries, and the filters used to determine the composite information, are shown in the legend. These graphs were created using the Fire History Analysis and Exploration System (FHAES). See http://frames.nbii.gov/fhaes/ for more information.