# Vestra Gíslholtsvatn, Iceland 2000 Year Biomarker and Geochemical Data #----------------------------------------------------------------------- # World Data Service for Paleoclimatology, Boulder # and # NOAA Paleoclimatology Program # National Centers for Environmental Information (NCEI) #----------------------------------------------------------------------- # Template Version 3.0 # Encoding: UTF-8 # NOTE: Please cite Publication, and Online_Resource and date accessed when using these data. # If there is no publication information, please cite Investigators, Title, and Online_Resource and date accessed. # # Online_Resource: https://www.ncdc.noaa.gov/paleo/study/29992 # Description: NOAA Landing Page # Online_Resource: https://www.ncei.noaa.gov/pub/data/paleo/paleolimnology/europe/iceland/vestra-gslholtsvatn2020alkenone.txt # Description: NOAA location of the template # # Original_Source_URL: # Description: # # Description/Documentation lines begin with # # Data lines have no # # # Data_Type: paleolimnology # # Dataset_DOI: # # Parameter_Keywords: geochemistry, physical properties #-------------------- # Contribution_Date # Date: 2020-06-08 #-------------------- # File_Last_Modified_Date # Date: 2020-06-08 #-------------------- # Title # Study_Name: Vestra Gíslholtsvatn, Iceland 2000 Year Biomarker and Geochemical Data #-------------------- # Investigators # Investigators: Richter, N.; Russell, J.M.; Garfinkel, J.; Huang, Y. #-------------------- # Description_Notes_and_Keywords # Description: Biomarker (alkenones and n-alkanes) and geochemical (opal, organic carbon, total nitrogen) data from sediments collected in Vestra Gíslholtsvatn, Iceland for the past 2,000 years. # Alkenones were analyzed from lake sediment cores taken from Vestra Gíslholtsvatn, southwest Iceland in 2008. # Bulk organic and inorganic properties and leaf waxes were analyzed in lake sediment cores collected from Vestra G'slholtsvatn, southwest Iceland in 2008. # Leaf waxes were analyzed in lake sediment cores collected from Vestra G'slholtsv atn in southwest Iceland in 2008. The chronology for the lake sediment core was initially published in Blair et al. (2015). #-------------------- # Publication # Authors: Richter, N., Russell, J.M., Garfinkel, J., Huang, Y. # Published_Date_or_Year: 2021-01-04 # Published_Title: Impacts of Norse settlement on terrestrial and aquatic ecosystems in Southwest Iceland # Journal_Name: Journal of Paleolimnology # Volume: 65 # Edition: # Issue: # Pages: 255-269 # Report_Number: # DOI: 10.1007/s10933-020-00169-3 # Online_Resource: # Full_Citation: # Abstract: Norse colonization of North Atlantic islands in the 1st millennium of the Common Era led to drastic prehistoric environmental changes in these previously “pristine” landscapes. In Iceland, Norse settlement is associated with a rapid decline in birch trees and heightened soil erosion, yet the timing of Norse exploration in the North Atlantic coincided with large climate changes that also influenced Icelandic environments. To date, there are few records that disentangle climatic and human impacts on terrestrial ecosystems, and there has been very little work on the impacts of Norse arrival on Iceland’s aquatic ecosystems. Here we use a high-resolution lake-sediment record from Vestra Gíslholtsvatn (VGHV), southwest Iceland to investigate these processes during the last 2,000 years. Norse arrival (c. 870 CE) in Iceland is followed by a rapid increase in sedimentation rate and a transition in leaf wax n-alkanes indicating a decrease in trees and expansion of grasses. This transition coincides with limnological changes, including increased primary productivity (i.e. C17 n-alkane and biogenic opal fluxes) and shifts in the haptophyte algal community. Many of these changes are still apparent today. Comparisons with a new winter-spring alkenone temperature reconstruction from VGHV and marine sea surface temperature records show little to no correlation between terrestrial and aquatic ecological changes and climate at this time. Similarly, volcanic eruptions recorded in VGHV are not associated with any long-term environmental changes. Rather, the VGHV record suggests that human settlement had a lasting impact on the catchment area of VGHV and changes within the lake ecosystem. #-------------------- # Publication # Authors: Richter, Nora, James M. Russell, Johanna Garfinkel, Yongsong Huang # Published_Date_or_Year: 2020 # Published_Title: Cold season warming in the North Atlantic during the last 2000 years: Evidence from Southwest Iceland # Journal_Name: Climate of the Past # Volume: # Edition: # Issue: # Pages: 1-28 # Report_Number: # DOI: 10.5194/cp-2020-84 # Online_Resource: # Full_Citation: # Abstract: Temperature reconstructions from the Northern Hemisphere (NH) generally indicate cooling over the Holocene which is often attributed to decreasing summer insolation. However, climate model simulations predict that rising atmospheric CO2 concentrations and the collapse of the Laurentian Ice Sheet caused mean annual warming during this epoch. This contrast could reflect a seasonal bias in temperature proxies, and particularly a lack of proxies that record cold (late fall-early spring) season temperatures, or inaccuracies in climate model predictions of NH temperature. We reconstructed winter-spring temperatures during the Common Era (i.e. the last 2000 years) using alkenones, lipids produced by Isochrysidales haptophyte algae that bloom during spring ice-out, preserved in sediments from Vestra Gíslholtsvatn (VGHV), southwest Iceland. Our record indicates that winter-spring temperatures warmed during the last 2000 years, in contrast to most NH averages. Sensitivity tests with a lake energy balance model suggest that warmer winter and spring air temperatures result in earlier ice-off dates and warmer spring lake water temperatures, and therefore warming in our proxy record. Regional air temperatures are strongly influenced by sea surface temperatures (SSTs) during the winter and spring season. SSTs respond to both changes in ocean circulation and gradual changes in insolation. We also found distinct seasonal differences in centennial-scale, cold-season temperature variations in VGHV compared to existing records of summer and annual temperatures from Iceland. Multi-decadal to centennial-scale changes in winter-spring temperatures were strongly modulated by internal climate variability and changes in regional ocean circulation, which can result in winter and spring warming in Iceland even after a major negative radiative perturbation. #------------------ # Funding_Agency # Funding_Agency_Name: Geological Society of America # Grant: #------------------ # Funding_Agency # Funding_Agency_Name: Brown University # Grant: #------------------ # Site_Information # Site_Name: Vestra G'slholtsvatn # Location: Europe>Northern Europe>Iceland # Country: Iceland # Northernmost_Latitude: 63.94517 # Southernmost_Latitude: 63.94517 # Easternmost_Longitude: -20.519212 # Westernmost_Longitude: -20.519212 # Elevation: 61 #------------------ # Data_Collection # Collection_Name: VGHV2020alkenone # Earliest_Year: 1977 # Most_Recent_Year: 4 # Time_Unit: Cal. Year BP # Core_Length: 2.55 # Notes: #------------------ # Chronology_Information # Chronology: # The chronology for the lake sediment core was initially published by Blair et al. (2015). #---------------- # Variables # # Data variables follow are preceded by "##" in columns one and two. # Data line variables format: one per line, shortname-tab-variable components (what, material, error, units, seasonality, data type,detail, method, C or N for Character or Numeric data, free text) # ## depth_cm depth,,, centimeter,, paleolimnology,,,N, ## age_calBP age,,,calendar year before present,, paleolimnology,,,N, ## accrate sedimentation rate,,, centimeter per year,, paleolimnology, , ,N, ## drymass_g mass, dry sediment,, gram,, paleolimnology,,,N, dry sediment sample mass ## RIK37 ratio of isomeric ketones, sediment,,dimensionless,,paleolimnology,,,N,RIK37 values were calculated for C37Me alkenones after Longo et al. (2016) ## RIK38E ratio of isomeric ketones, sediment,,dimensionless,,paleolimnology,,,N,RIK38E values were calculated for C38Et alkenones after Longo et al. (2016) ## UK37 alkenone unsaturation index Uk37, sediment,,dimensionless,,paleolimnology,,,N, UK37 values were calculated after C37Me alkenones after Longo et al. (2016) ## C37:4Me_FrAb C37:4 alkenone, sediment,,fraction,,paleolimnology,,,N,C37:4 Me alkenone fractional abundance ## C37:3Me_FrAb C37:3 alkenone, sediment,,fraction,,paleolimnology,,,N,C37:3 Me alkenone fractional abundance ## C37:3*Me_FrAb C37:3 alkenone, sediment, ,fraction,,paleolimnology,,,N,C37:3* Me alkenone fractional abundance ## C37:2Me_FrAb C37:2 alkenone, sediment, ,fraction,,paleolimnology,,,N,C37:2 Me alkenone fractional abundance ## C38:4Et_FrAb C38:4 alkenone, sediment,,fraction,,paleolimnology,,,N,C38:4 Et alkenone fractional abundance ## C38:3Et_FrAb C38:3 alkenone, sediment, ,fraction,,paleolimnology,,,N,C38:3 Et alkenone fractional abundance ## C38:3*Et_FrAb C38:3 alkenone, sediment, ,fraction,,paleolimnology,,,N,C38:3* Et alkenone fractional abundance ## C38:2Et_FrAb C38:2 alkenone, sediment, ,fraction,,paleolimnology,,,N,C38:2 Et alkenone fractional abundance ## C38:4Me_FrAb C38:4 alkenone, sediment, ,fraction,,paleolimnology,,,N,C38:4 Me alkenone fractional abundance ## C38:3Me_FrAb C38:3 alkenone, sediment, ,fraction,,paleolimnology,,,N,C38:3 Me alkenone fractional abundance ## C38:3*Me_FrAb C38:3 alkenone, sediment, ,fraction,,paleolimnology,,,N,C38:3* Me alkenone fractional abundance ## C38:2Me_FrAb C38:2 alkenone, sediment, ,fraction,,paleolimnology,,,N,C38:2 Me alkenone fractional abundance # #---------------- # Data: # Data lines follow (have no #) # Data line format - tab-delimited text, variable short name as header # Missing_Values: NaN # depth_cm age_calBP accrate drymass_g RIK37 RIK38E UK37 C37:4Me_FrAb C37:3Me_FrAb C37:3*Me_FrAb C37:2Me_FrAb C38:4Et_FrAb C38:3Et_FrAb C38:3*Et_FrAb C38:2Et_FrAb C38:4Me_FrAb C38:3Me_FrAb C38:3*Me_FrAb C38:2Me_FrAb 9.5 4 5.58 0.57 NaN -0.16 0.24 0.39 0.29 0.08 NaN NaN NaN NaN NaN NaN NaN NaN 13.5 26 5.58 0.85 NaN -0.04 0.16 0.61 0.11 0.12 NaN NaN NaN NaN NaN NaN NaN NaN 15.8 39 5.58 0.77 NaN 0.2 0 0.61 0.18 0.2 NaN NaN NaN NaN NaN NaN NaN NaN 17.5 48 5.59 0.56 NaN 0.04 0.15 0.37 0.29 0.19 NaN NaN NaN NaN NaN NaN NaN NaN 21.5 69 5.64 0.55 NaN -0.19 0.34 0.28 0.23 0.15 NaN NaN NaN NaN NaN NaN NaN NaN 25.5 91 5.73 0.5 0.29 -0.26 0.1 0.07 0.07 0.03 0.11 0.09 0.22 NaN 0.23 0.02 0.02 0.02 31.5 126 5.94 0.77 NaN -0.06 0.21 0.5 0.15 0.15 NaN NaN NaN NaN NaN NaN NaN NaN 35.5 151 6.14 0.7 NaN 0.06 0.17 0.42 0.18 0.23 NaN NaN NaN NaN NaN NaN NaN NaN 41.5 188 6.51 0.67 0.19 -0.14 0.1 0.14 0.07 0.05 0.09 0.05 0.22 0.01 0.16 0.03 0.03 0.05 45.5 215 6.81 0.64 NaN -0.18 0.31 0.36 0.2 0.13 NaN NaN NaN NaN NaN NaN NaN NaN 47 225 6.93 0.89 NaN 0.03 0.08 0.71 0.09 0.11 NaN NaN NaN NaN NaN NaN NaN NaN 51.5 257 7.28 0.63 0.24 -0.12 0.09 0.12 0.07 0.05 0.08 0.09 0.28 0 0.11 NaN 0.07 0.05 65.5 363 7.56 0.55 0.28 -0.25 0.2 0.16 0.13 0.06 0.09 0.09 0.23 NaN NaN NaN NaN 0.04 67.5 378 7.51 0.85 NaN 0 0.18 0.55 0.1 0.18 NaN NaN NaN NaN NaN NaN NaN NaN 69.5 393 7.42 0.66 NaN -0.11 0.25 0.4 0.21 0.14 NaN NaN NaN NaN NaN NaN NaN NaN 71.5 407 7.32 0.7 0.28 -0.19 0.12 0.14 0.06 0.05 0.05 0.08 0.21 NaN 0.14 0.05 0.05 0.05 73.5 422 7.19 0.48 NaN -0.13 0.34 0.21 0.23 0.21 NaN NaN NaN NaN NaN NaN NaN NaN 75.5 436 7.03 0.89 NaN 0.02 0.08 0.74 0.09 0.1 NaN NaN NaN NaN NaN NaN NaN NaN 77.9 453 6.81 0.85 NaN -0.02 0.14 0.63 0.11 0.12 NaN NaN NaN NaN NaN NaN NaN NaN 81.5 477 6.49 0.61 NaN -0.14 0.29 0.34 0.22 0.15 NaN NaN NaN NaN NaN NaN NaN NaN 83.5 489 6.32 0.8 NaN -0.04 0.18 0.55 0.14 0.14 NaN NaN NaN NaN NaN NaN NaN NaN 87.5 514 6.01 0.86 NaN -0.06 0.17 0.62 0.1 0.11 NaN NaN NaN NaN NaN NaN NaN NaN 91.5 538 5.73 0.56 0.13 -0.32 0.16 0.1 0.08 0.04 0.13 0.04 0.27 0.02 0.04 0.06 NaN 0.06 95.5 559 5.49 0.54 0.3 -0.24 0.09 0.07 0.06 0.03 0.12 0.13 0.3 0.01 0.11 0.05 NaN 0.02 99.5 580 5.26 0.61 0.17 -0.3 0.15 0.11 0.07 0.04 0.14 0.02 0.1 0.18 NaN 0.06 0.11 0.03 101.5 591 5.16 0.63 0.42 -0.35 0.23 0.17 0.1 0.04 0.15 0.05 0.07 0.02 0.04 0.04 0.04 0.05 105.5 611 4.98 0.64 0.35 -0.22 0.14 0.14 0.08 0.05 0.1 0.09 0.17 NaN 0.18 NaN 0.05 NaN 109.5 631 4.83 0.6 NaN -0.2 0.3 0.36 0.24 0.1 NaN NaN NaN NaN NaN NaN NaN NaN 111.5 640 4.77 0.71 0.23 -0.16 0.14 0.22 0.09 0.06 0.1 0.07 0.23 NaN 0.09 NaN NaN NaN 115.5 659 4.67 0.65 0.23 -0.24 0.14 0.15 0.08 0.04 0.12 0.06 0.2 0.01 0.05 0.05 0.05 0.06 119.5 678 4.59 0.64 0.31 -0.38 0.2 0.14 0.08 0.03 0.22 0.04 0.09 0.03 0.02 0.07 0.08 NaN 123.5 696 4.55 0.6 0.2 0.05 0.08 0.12 0.08 0.1 0.08 0.06 0.24 NaN 0.22 NaN 0.03 NaN 127.5 714 4.53 0.63 0.19 -0.15 0.18 0.15 0.09 0.1 0.11 0.03 0.13 NaN 0.15 0.05 0.03 NaN 129.5 723 4.54 0.58 0.16 -0.38 0.18 0.11 0.08 0.03 0.21 0.03 0.16 0.03 0.03 0.06 0.06 0.03 131.5 732 4.55 0.7 0.14 -0.24 0.2 0.19 0.08 0.07 0.12 0.02 0.12 0.02 0.05 0.01 0.07 0.05 133.5 741 4.57 0.61 0.33 -0.11 0.12 0.17 0.11 0.07 0.1 0.05 0.1 NaN 0.21 0.03 0.04 NaN 135 748 4.59 0.74 0.2 -0.05 0.08 0.17 0.06 0.06 0.08 0.05 0.2 NaN 0.15 0.02 0.06 0.05 139.5 768 4.66 0.65 0.15 -0.39 0.18 0.11 0.06 0.03 0.17 0.03 0.17 0.11 NaN 0.06 0.02 0.07 141.5 777 4.71 0.79 0.14 -0.05 0.09 0.22 0.06 0.07 0.07 0.05 0.31 NaN NaN NaN 0.1 0.04 147.2 804 4.88 0.83 NaN 0.02 0.1 0.65 0.13 0.12 NaN NaN NaN NaN NaN NaN NaN NaN 151.2 824 5.05 0.87 NaN -0.02 0.21 0.52 0.08 0.19 NaN NaN NaN NaN NaN NaN NaN NaN 155.2 845 5.24 0.61 0.14 -0.33 0.15 0.11 0.07 0.03 0.21 0.03 0.19 0.1 NaN 0.06 0.05 NaN 157.2 855 5.35 0.67 0.1 -0.21 0.23 0.16 0.08 0.11 0.07 0.03 0.28 0.03 NaN 0.02 NaN NaN 161.2 876 5.64 0.61 NaN -0.34 0.34 0.14 0.09 0.11 0.12 0.04 NaN NaN 0.01 0.04 0.02 0.09 163.2 888 5.82 0.88 NaN 0.04 0.11 0.64 0.09 0.15 NaN NaN NaN NaN NaN NaN NaN NaN 165.2 900 6.03 0.57 0.07 -0.33 0.11 0.08 0.06 0.02 0.11 0.02 0.25 0.27 0 0.04 0.02 0.01 167.2 912 6.27 0.76 NaN -0.18 0.13 0.16 0.05 0.06 0.08 NaN 0.18 NaN 0.22 0.03 0.06 0.04 169.2 925 6.53 0.73 0.11 -0.08 0.12 0.22 0.08 0.08 0.11 0.02 0.16 0.01 0 0.05 0.1 0.06 171.2 938 6.81 0.61 0.26 -0.17 0.15 0.11 0.07 0.08 0.11 0.07 0.2 NaN 0.16 0.03 0.02 0.01 173.2 952 7.12 0.9 NaN 0 0.1 0.72 0.08 0.1 NaN NaN NaN NaN NaN NaN NaN NaN 175.2 966 7.45 0.63 NaN -0.29 0.13 0.12 0.07 0.03 0.19 NaN 0.19 0.17 NaN 0.07 0.04 NaN 177.2 982 7.81 0.54 0.29 -0.38 0.27 0.14 0.12 0.05 0.16 0.04 0.1 0.02 0.05 0.05 NaN NaN 179.2 998 8.19 0.77 0.2 -0.08 0.1 0.27 0.08 0.06 0.08 0.03 0.12 0.01 0.03 0.04 0.12 0.05 181.2 1014 8.59 0.48 0.23 -0.04 0.12 0.14 0.15 0.1 0.09 0.06 0.2 NaN 0.07 0.04 NaN 0.05 183.2 1032 9.01 0.57 NaN -0.33 0.43 0.27 0.2 0.1 NaN NaN NaN NaN NaN NaN NaN NaN 185.2 1050 9.38 0.58 0.25 -0.48 0.33 0.14 0.1 0.04 0.17 0.04 0.12 0.02 NaN 0.06 NaN NaN 186.9 1066 9.65 0.65 0.13 -0.16 0.15 0.22 0.12 0.06 0.12 0.02 0.14 NaN NaN 0.06 0.1 NaN 189.4 1080 9.85 0.56 0.13 -0.44 0.23 0.09 0.07 0.04 0.16 0.02 0.13 0.02 0.14 0.07 NaN 0.03 191.2 1098 10.1 0.59 0.24 -0.39 0.23 0.13 0.09 0.04 0.17 0.04 0.13 0.02 0.04 0.07 0.04 0.01 193.2 1118 10.37 0.57 0.18 -0.35 0.22 0.12 0.09 0.05 0.16 0.03 0.14 0.02 0.03 0.07 0.03 0.02 194.8 1135 10.58 0.65 0.2 -0.33 0.23 0.17 0.09 0.05 0.14 0.03 0.12 0.02 0.03 0.05 0.04 0.02 196.9 1157 10.85 0.68 0.2 -0.34 0.23 0.17 0.08 0.05 0.14 0.03 0.12 0.02 0.04 0.05 0.04 0.02 199.1 1181 11.14 0.79 NaN -0.34 0.39 0.44 0.12 0.05 NaN NaN NaN NaN NaN NaN NaN NaN 201.3 1203 11.4 0.61 0.21 -0.45 0.29 0.14 0.09 0.04 0.15 0.03 0.11 0.02 0.03 0.05 0.03 0.01 203.2 1225 11.64 0.69 0.27 -0.38 0.27 0.2 0.09 0.04 0.15 0.04 0.11 0.01 NaN 0.05 0.05 NaN 205.2 1249 11.89 0.68 0.27 -0.38 0.26 0.19 0.09 0.04 0.14 0.04 0.11 0.01 0.04 0.05 0.04 NaN 207.2 1273 12.14 0.75 NaN -0.32 0.36 0.45 0.15 0.04 NaN NaN NaN NaN NaN NaN NaN NaN 209.2 1297 12.38 0.67 0.32 -0.25 0.17 0.2 0.1 0.04 0.13 0.06 0.13 0.02 0.03 0.05 0.07 NaN 211.2 1322 12.62 0.68 0.21 -0.31 0.22 0.19 0.09 0.05 0.14 0.03 0.11 0.02 0.04 0.05 0.05 NaN 213.6 1337 12.77 0.67 0.21 -0.44 0.27 0.16 0.08 0.03 0.16 0.03 0.11 0.02 0.04 0.06 0.04 NaN 215.2 1358 12.95 0.65 0.17 -0.39 0.28 0.17 0.09 0.05 0.14 0.02 0.1 0.02 0.03 0.05 0.03 0.01 217.2 1384 13.19 0.72 NaN -0.45 0.51 0.31 0.12 0.06 NaN NaN NaN NaN NaN NaN NaN NaN 219.2 1411 13.41 0.64 0.21 -0.43 0.27 0.14 0.08 0.04 0.16 0.03 0.11 0.02 0.05 0.06 0.04 0.01 221.2 1438 13.64 0.53 0.19 -0.49 0.27 0.1 0.09 0.03 0.19 0.03 0.13 0.03 0.03 0.06 0.01 0.03 223.2 1465 13.86 0.55 0.24 -0.48 0.27 0.11 0.09 0.03 0.2 0.04 0.13 0.03 0.03 0.07 0 NaN 225.1 1492 14.07 0.55 0.26 -0.38 0.2 0.12 0.1 0.03 0.19 0.05 0.14 0.05 0.03 0.06 0.01 0.01 229.2 1543 14.45 0.63 0.2 -0.38 0.25 0.17 0.1 0.04 0.15 0.03 0.12 0.02 0.03 0.05 0.03 0.02 231.2 1572 14.65 0.57 0.14 -0.4 0.27 0.13 0.1 0.05 0.15 0.02 0.12 0.02 0.05 0.06 0.02 NaN 233.2 1602 14.86 0.53 0.2 -0.54 0.32 0.1 0.09 0.03 0.17 0.03 0.12 0.02 0.04 0.06 0.01 0.01 235.2 1632 15.06 0.56 0.13 -0.52 0.26 0.1 0.08 0.02 0.22 0.02 0.13 0.03 0.04 0.07 0.01 0.01 237.2 1662 15.25 0.52 0.23 -0.44 0.33 0.13 0.12 0.05 0.14 0.03 0.1 0.02 0.03 0.05 0.01 NaN 239.2 1693 15.45 0.55 0.19 -0.49 0.28 0.11 0.09 0.03 0.18 0.03 0.13 0.03 0.04 0.07 0.01 NaN 241.2 1724 15.63 0.52 0.2 -0.37 0.22 0.12 0.11 0.04 0.16 0.04 0.16 0.03 0.03 0.07 0.02 NaN 243.2 1755 15.82 0.67 0.38 -0.36 0.22 0.16 0.08 0.04 0.15 0.05 0.08 0.02 0.1 0.05 0.05 NaN 245.2 1787 16 0.5 0.14 -0.31 0.12 0.09 0.09 0.02 0.21 0.04 0.24 0.06 0.02 0.09 0.01 0.02 247.2 1819 16.18 0.63 0.18 -0.22 0.19 0.22 0.13 0.06 0.07 0.03 0.14 NaN NaN 0.04 0.07 0.05 249.2 1852 16.35 0.58 0.18 -0.25 0.17 0.15 0.11 0.05 0.09 0.04 0.18 0.03 0.02 0.07 0.09 NaN 251.2 1885 16.52 0.62 0.25 -0.32 0.2 0.16 0.1 0.04 0.13 0.05 0.15 0.03 0.02 0.07 0.06 NaN 253.2 1914 16.67 0.62 0.16 -0.18 0.2 0.24 0.15 0.08 NaN 0.04 0.21 0.01 0.01 0.05 0.01 NaN 255.2 1948 16.84 0.54 NaN -0.38 0.45 0.26 0.22 0.07 NaN NaN NaN NaN NaN NaN NaN NaN 256.9 1977 16.97 0.62 0.19 -0.27 0.18 0.18 0.11 0.04 0.11 0.04 0.17 0.02 0.01 0.07 0.07 NaN