# Lake N3, Greenland 7,800 Year Leaf Wax d2H and Geochemical Data #----------------------------------------------------------------------- # World Data Service for Paleoclimatology, Boulder # and # NOAA Paleoclimatology Program # National Centers for Environmental Information (NCEI) #----------------------------------------------------------------------- # # NOTE: Please cite original publication, online resource and date accessed when using this data. # If there is no publication information, please cite Investigator, title, online resource and date accessed. # # Description/Documentation lines begin with # # Data lines have no # # # Online_Resource: http://www.ncdc.noaa.gov/paleo/study/20126 # Online_Resource: http://www1.ncdc.noaa.gov/pub/data/paleo/paleolimnology/greenland/n3-2016wax.txt # # Archive: Paleolimnology # # Parameter_Keywords: hydrogen isotopes #--------------------------------------- # Contribution_Date # Date: 2020-06-19 #--------------------------------------- # Title # Study_Name: Lake N3, Greenland 7,800 Year Leaf Wax d2H and Geochemical Data #--------------------------------------- # Investigators # Investigators: Thomas, E.K.; Briner, J.P.; Ryan-Henry, J.J.; Huang, Y. #--------------------------------------- # Description and Notes # Description: Aquatic plant leaf wax hydrogen isotope (d2H) and geochemical data from sediments collected in lake N3, western Greenland. # Data include hydrogen isotopes of the C24, C26, and C28 n-alkanoic acids (aquatic plant biomarkers), plus Loss-On-Ignition, # Biogenic Silica, Carbon and Nitrogen concentrations and isotopes (d13C and d15N), and mineral matter concentration. # # Provided Keywords: Greenland, Holocene, Precipitation, Leaf wax hydrogen isotope, Precipitation seasonality, Sea ice # # Down-core n-alkanoic acid concentration data (this file) added 19 June 2020. # # Amount of n-alkanoic acids (%) in modern plant sample in Lake N3 catchment: # Plant name sample growth form C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 C33 C34 # Vaccineum microphyllum shrub 0.13 0.01 0.07 0.02 0.18 0.05 0.22 0.03 0.28 0.01 0.01 0.00 0.00 0.00 0.00 # Salix glauca shrub 0.04 0.00 0.18 0.01 0.39 0.02 0.27 0.01 0.07 0.00 0.00 0.00 0.00 0.00 0.00 # Betula nana shrub 0.03 0.01 0.17 0.01 0.24 0.02 0.20 0.01 0.29 0.00 0.02 0.00 0.00 0.00 0.00 # Empetrum hermaphroditum shrub 0.03 0.00 0.05 0.01 0.12 0.03 0.14 0.02 0.24 0.02 0.18 0.00 0.10 0.01 0.05 # Warnstorfia sp. aquatic 0.03 0.00 0.18 0.05 0.33 0.04 0.18 0.03 0.13 0.01 0.03 0.00 0.00 0.00 0.00 # # average shrub 0.06 0.01 0.12 0.02 0.23 0.03 0.21 0.02 0.22 0.01 0.05 0.00 0.02 0.00 0.01 # standard deviation 0.05 0.00 0.07 0.00 0.12 0.01 0.05 0.01 0.10 0.01 0.08 0.00 0.05 0.00 0.02 # # average Lake N3 Holocene sediments (n = 102) average sediment 0.05 0.15 0.35 0.26 0.15 0.04 0.01 # standard deviation 0.04 0.06 0.07 0.04 0.05 0.02 0.00 # #--------------------------------------- # Publication # Authors: Elizabeth K. Thomas, Jason P. Briner, John J. Ryan-Henry and Yongsong Huang # Published_Date_or_Year: 2016-04-25 # Published_Title: A major increase in winter snowfall during the middle Holocene on western Greenland caused by reduced sea ice in Baffin Bay and the Labrador Sea # Journal_Name: Geophysical Research Letters # Volume: # Edition: # Issue: # Pages: # Report Number: # DOI: 10.1002/2016GL068513 # Online_Resource: # Full_Citation: # Abstract: Precipitation is predicted to increase in the Arctic as temperature increases and sea ice retreats. Yet, the mechanisms controlling precipitation in the Arctic are poorly understood and quantified only by the short, sparse instrumental record. We use hydrogen isotope ratios (d2H) of lipid biomarkers in lake sediments from western Greenland to reconstruct precipitation seasonality and summer temperature during the past 8 kyr. Aquatic biomarker d2H was 100 per mil more negative from 6 to 4ka than during the early and late Holocene, which we interpret to reflect increased winter snowfall. The middle Holocene also had high summer air temperature, decreased early winter sea ice in Baffin Bay and the Labrador Sea, and a strong, warm West Greenland Current. These results corroborate model predictions of winter snowfall increases caused by sea ice retreat, and furthermore suggest that warm currents advecting more heat into the polar seas may enhance Arctic evaporation and snowfall. #--------------------------------------- # Funding_Agency # Funding_Agency_Name: Geological Society of America # Grant: Student Research Grant, Limnogeology Division Kerry Kelts Research Award, Quaternary Geology and Geomorphology Division Marie Morisawa Research Award #--------------------------------------- # Funding_Agency # Funding_Agency_Name: US National Science Foundation # Grant: Graduate Research Fellowship, 909334, 520718, EAR Postdoctoral Fellowship #--------------------------------------- # Site Information # Site_Name: Lake N3 # Location: North America>Greenland # Country: Greenland # Northernmost_Latitude: 68.636 # Southernmost_Latitude: 68.636 # Easternmost_Longitude: 50.98 # Westernmost_Longitude: 50.98 # Elevation: 59 m #--------------------------------------- # Data_Collection # Collection_Name: N3wax # First_Year: 7758 # Last_Year: 328 # Time_Unit: cal. yr BP # Core_Length: 2.05 m # Notes: #--------------------------------------- # Chronology_Information # Chronology: # # Table S1 # Lead-210 profile from Lake N3, core 10N3-SC # # Core Depth (top) Pb-210 Precision CRS Modeled Age Age uncertainty # (cm) (Bq/g) (1sigma) (years BP) (±2sigma range) # # 0 0.985 7.3 -61 0 # 1 0.550 7.1 -41 4 # 2 0.155 11.2 -8 24 # 3 0.074 15.4 24 84 # 4 0.045 9.5 59 238 # 5 0.033 15.4 # 6 0.028 19.8 # 7 0.025 19.5 # 8 0.057 11.1 # 9 0.043 24.0 # 10 0.040 11.5 # 11 0.017 10.1 # 12 0.026 16.8 # 13 0.027 28.0 # 14 0.024 25.2 # 15 0.037 11.3 # 16 0.025 23.1 # 17 0.031 19.5 # 18 0.027 11.6 # 19 0.023 14.7 # 25 0.013 23.8 # 35 0.017 15.2 # # Table S2 # Radiocarbon ages of long cores from Lake N3 # # Site/Core Core Depth Composite Depth Lab Number Material Dated Fraction Modern d13C Radiocarbon Age Calibrated Age solutions Calibrated Age Calibrated Age Uncertainty # (cm) (cm) (per mil, VPDB) (14C yr BP) (2sigma solutions) (years BP) (±2Sigma range) # # 10-N3-2A-1 3 10 CURL-12691 aquatic macrofossils 0.9331±0.0018 -29.7 permil 555±15 530 - 558, 603 - 628 580 20 # 10-N3-2A-1 30 38 CURL-12700 aquatic macrofossils 0.7359±0.0013 -30.2 permil 2465±15 2366 - 2390, 2398 - 2411, 2455 - 2552, 2556 - 2618, 2633 - 2704 2540 80 # 10-N3-2A-1 65 73 CURL-12694 aquatic macrofossils 0.6414±0.0012 -34.4 permil 3565±20 3776 - 3789, 3827 - 3924, 3950 - 3958 3870 50 # 10-N3-2A-2 3 100 CURL-12696 aquatic macrofossils 0.5895±0.0013 -28.9 permil 4245±20 4728 - 4735, 4741 - 4750, 4820 - 4856 4790 30 # 10-N3-2A-2 23 120 CURL-12692 aquatic macrofossils 0.5534±0.0011 -29.2 permil 4755±20 5337 - 5343, 5467 - 5584 5460 60 # 10-N3-2A-2 97 195 CURL-12701 aquatic macrofossils 0.4382±0.0012 -25.4 permil 6625±25 7462 - 7570 7520 30 # 10-N3-4A-2 6 203 CURL-12693 aquatic macrofossils 0.4196±0.0011 -25.8 permil 6975±25 7724 - 7866, 7900 - 7924 7820 50 # 10-N3-2A-2 115 212 CURL-12698 aquatic macrofossils 0.4167±0.0013 -27.1 permil 7030±25 7796 - 7809, 7824 - 7936 7870 40 # # # Notes: Calibrated ages are rounded to the nearest decade. Present is defined as AD 1950. Calibrated ages are midpoints of the range of 2s calibrated solutions. # # #--------------------------------------- # Variables # # Data variables follow that are preceded by "##" in columns one and two. # Variables list, one per line, shortname-tab-longname components (9 components: what, material, error, units, seasonality, archive, detail, method, C or N for Character or Numeric data) # ## core Core name,,,,,,,,C, ## depth depth, , , centimeter, , , composite depth, ,N, ## age age, , , calendar years before present, , , mean age of sediment, ,N, ## age- age minimum, , , calendar years before present, , , minimum age of sediment, ,N, ## age+ age maximum, , , calendar years before present, , , maximum age of sediment, ,N, ## C20 C20 n-alkanoic acid, dry sediment,,microgram per gram, , paleolimnology, , ,N, ## C21 C21 n-alkanoic acid, dry sediment,,microgram per gram, , paleolimnology, , ,N, ## C22 C22 n-alkanoic acid, dry sediment,,microgram per gram, , paleolimnology, , ,N, ## C23 C23 n-alkanoic acid, dry sediment,,microgram per gram, , paleolimnology, , ,N, ## C24 C24 n-alkanoic acid, dry sediment,,microgram per gram, , paleolimnology, , ,N, ## C25 C25 n-alkanoic acid, dry sediment,,microgram per gram, , paleolimnology, , ,N, ## C26 C26 n-alkanoic acid, dry sediment,,microgram per gram, , paleolimnology, , ,N, ## C27 C27 n-alkanoic acid, dry sediment,,microgram per gram, , paleolimnology, , ,N, ## C28 C28 n-alkanoic acid, dry sediment,,microgram per gram, , paleolimnology, , ,N, ## C29 C29 n-alkanoic acid, dry sediment,,microgram per gram, , paleolimnology, , ,N, ## C30 C30 n-alkanoic acid, dry sediment,,microgram per gram, , paleolimnology, , ,N, ## C31 C31 n-alkanoic acid, dry sediment,,microgram per gram, , paleolimnology, , ,N, ## C32 C32 n-alkanoic acid, dry sediment,,microgram per gram, , paleolimnology, , ,N, # #------------------------ # Data # Data lines follow (have no #) # Data line format - tab-delimited text, variable short name as header # Missing Value: NaN # core depth age age- age+ C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31 C32 10N3-2A 0.25 328 388 250 53 12 97 33 190 33 147 21 93 10 32 4 11 10N3-2A 0.75 369 425 295 NaN 30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 10N3-2A 1.75 450 499 383 30 11 93 32 157 33 137 20 85 8 28 3 9 10N3-2A 3.25 572 618 511 NaN 11 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 10N3-2A 4.25 654 700 594 10 4 30 10 69 14 72 10 50 4 14 1 4 10N3-2A 5.25 735 785 673 20 9 63 23 154 29 139 18 75 5 14 1 2 10N3-2A 7.75 938 1009 866 6 2 19 7 42 9 45 7 29 3 9 1 3 10N3-2A 9.75 1099 1190 1020 NaN 1099 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 10N3-2A 11.75 1258 1366 1170 8 5 34 13 92 18 96 14 65 5 17 2 4 10N3-2A 12.75 1337 1453 1245 6 3 21 7 52 10 57 8 40 3 12 1 3 10N3-2A 14.25 1454 1582 1356 11 6 42 16 113 93 117 16 78 7 23 2 6 10N3-2A 15.25 1531 1665 1430 16 7 56 21 147 29 151 20 88 7 20 2 3 10N3-2A 18.25 1758 1913 1647 11 4 35 13 86 18 87 12 54 5 16 2 4 10N3-2A 19.75 1869 2034 1753 11 5 42 16 111 23 113 15 68 7 20 2 6 10N3-2A 20.75 1941 2113 1823 69 18 128 49 322 69 344 49 222 20 64 7 16 10N3-2A 22.25 2047 2229 1925 NaN 14 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 10N3-2A 25.75 2285 2484 2155 12 6 44 15 104 20 96 12 51 4 12 1 2 10N3-2A 26.75 2349 2551 2217 21 9 72 24 169 35 190 26 125 10 40 3 9 10N3-2A 28.25 2444 2648 2309 16 5 36 13 88 18 92 12 56 5 18 2 5 10N3-2A 30.25 2564 2771 2428 8 4 28 9 64 12 63 8 38 3 12 1 3 10N3-2A 31.75 2650 2858 2515 NaN 64 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 10N3-2A 33.75 2758 2963 2623 NaN 278 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 10N3-2A 35.75 2860 3059 2727 13 12 98 23 147 23 121 16 75 6 25 2 5 10N3-2A 37.25 2933 3126 2803 24 18 135 38 258 46 231 30 132 11 36 3 6 10N3-2A 39.75 3048 3228 2924 24 11 91 22 159 25 127 16 72 7 24 2 7 10N3-2A 41.75 3133 3302 3015 NaN 1937 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 10N3-2A 44.75 3253 3398 3146 11 11 85 16 101 14 76 9 44 4 14 1 4 10N3-2A 46.75 3327 3454 3228 27 18 174 39 302 46 249 31 141 12 43 4 10 10N3-2A 53.25 3541 3632 3466 13 10 83 19 146 22 118 14 67 6 21 2 6 10N3-2A 56.75 3643 3718 3574 31 25 207 41 284 38 179 19 79 6 18 1 4 10N3-2A 57.5 3664 3736 3596 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 10N3-2A 60.25 3751 3837 3683 61 26 207 45 333 48 258 31 151 14 52 5 15 10N3-2A 62.25 3789 3875 3724 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 10N3-2A 67.75 3925 4003 3842 48 42 344 74 529 72 390 47 229 18 65 5 14 10N3-2A 72.75 4044 4117 3984 18 20 141 35 211 31 167 20 91 8 29 3 8 10N3-2A 77.75 4161 4225 4103 28 43 350 62 414 46 240 29 137 11 38 3 7 10N3-2A 81.75 4256 4320 4201 NaN 179 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 10N3-2A 85.75 4353 4412 4297 13 14 116 32 241 27 150 17 82 7 25 2 7 10N3-2A 88.25 4415 4498 4358 23 26 244 53 459 46 249 29 137 12 42 4 11 10N3-2A 89.75 4453 4540 4397 12 24 192 39 256 22 91 11 53 4 16 1 4 10N3-2A 93.25 4544 4639 4495 30 45 326 71 477 51 298 35 163 14 49 4 12 10N3-2A 98.75 4698 4790 4665 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 10N3-2A 100.75 4757 4843 4732 15 32 228 61 475 41 205 24 117 11 37 4 10 10N3-2A 103.75 4850 4930 4828 31 59 387 177 1347 135 666 84 373 35 115 12 31 10N3-2A 106.75 4948 5023 4922 18 24 109 67 503 44 226 27 118 12 35 4 9 10N3-2A 112.75 5154 5240 5114 8 5 32 20 170 20 113 13 60 5 18 1 4 10N3-2A 115.75 5259 5373 5211 NaN 2996 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 10N3-2A 118.25 5346 5483 5289 NaN 2314 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 10N3-2A 121.75 5465 5632 5400 17 14 43 40 227 21 120 13 67 6 21 2 6 10N3-2A 124.25 5548 5733 5475 NaN 1374 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 10N3-2A 125.75 5580 5775 5504 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 10N3-2A 127.25 5644 5847 5563 NaN 1342 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 10N3-2A 128.75 5690 5900 5604 38 35 121 63 538 59 381 36 148 11 31 2 5 10N3-2A 133.25 5824 6048 5724 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 10N3-2A 134.25 5853 6078 5750 15 8 38 25 217 26 174 18 87 7 24 2 7 10N3-2A 137.75 5951 6178 5837 NaN 3309 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 10N3-2A 139.75 6006 6232 5886 25 13 75 31 262 34 242 21 96 7 21 2 4 10N3-2A 141.25 6060 6283 5935 25 15 56 31 189 30 164 20 82 8 21 2 6 10N3-2A 145.25 6152 6365 6012 17 13 74 29 233 30 232 24 123 9 33 3 9 10N3-2A 147.75 6216 6415 6068 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 10N3-2A 150.25 6279 6458 6124 22 21 115 39 316 39 263 27 122 10 31 2 5 10N3-2A 152.75 6342 6490 6185 11 12 69 26 214 24 172 18 91 8 29 2 6 10N3-2A 157.25 6453 6606 6296 18 7 38 13 110 15 105 11 54 5 18 2 4 10N3-2A 158.75 6490 6643 6332 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 10N3-2A 160.25 6527 6679 6368 10 9 43 13 104 13 86 8 35 3 9 1 1 10N3-2A 165.25 6650 6801 6491 NaN 1743 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 10N3-2A 169.25 6749 6898 6591 23 16 118 38 286 36 228 25 116 11 39 3 9 10N3-2A 170.75 6787 6935 6630 28 20 157 43 365 44 261 27 117 10 36 2 5 10N3-2A 173.25 6851 6997 6698 NaN 25 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 10N3-2A 177.25 6955 7095 6811 6 5 42 14 128 14 84 9 44 4 16 1 3 10N3-2A 181.25 7062 7191 6930 14 10 84 25 197 25 146 18 81 8 27 2 5 10N3-2A 182.25 7090 7215 6961 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 10N3-2A 184.25 7145 7263 7025 NaN 18 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 10N3-2A 187.75 7246 7346 7144 4 4 45 13 112 11 52 7 36 4 15 1 3 10N3-2A 191.75 7367 7444 7290 11 6 41 13 112 15 87 10 49 3 14 1 2 10N3-2A 196.75 7526 7578 7480 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 10N3-2A 197.25 7543 7595 7497 NaN 24 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 10N3-2A 200.25 7642 7700 7595 4 1 10 3 31 4 39 5 45 2 13 0 3 10N3-2A 202.25 7704 7770 7653 18 3 33 7 98 13 144 22 166 10 65 2 16 10N3-2A 204.25 7758 7832 7703 4 1 7 2 17 2 20 3 21 1 8 0 1