# Sokli, Finland Air Temperature Reconstructions during the Holocene #----------------------------------------------------------------------- # World Data Service for Paleoclimatology, Boulder # and # NOAA Paleoclimatology Program # National Centers for Environmental Information (NCEI) #----------------------------------------------------------------------- # Template Version 3.0 # Encoding: UTF-8 # NOTE: Please cite Publication, and Online_Resource and date accessed when using these data. # If there is no publication information, please cite Investigators, Title, and Online_Resource and date accessed. # # Online_Resource: https://www.ncdc.noaa.gov/paleo/study/30753 # Online_Resource_Description: NOAA Landing Page # # Online_Resource: https://www.ncdc.noaa.gov/paleo/study/27330 # Online_Resource_Description: NOAA Landing Page for Temperature-12k Database # # Online_Resource: https://www.ncei.noaa.gov/pub/data/paleo/reconstructions/climate12k/temperature/version1.0.0/Temp12k_directory_NOAA_files/Sokli.Shala.2017.txt # Online_Resource_Description: NOAA location of the template # # Online_Resource: https://www.ncei.noaa.gov/pub/data/paleo/reconstructions/climate12k/temperature/version1.0.0/Temp12k_directory_LiPD_files/Sokli.Shala.2017.lpd # Online_Resource_Description: Linked Paleo Data (LiPD) formatted file containing metadata and data related to this file, for version 1.0.0 of this dataset. # # Original_Source_URL: # Description/Documentation lines begin with # # Data lines have no # # # Data_Type: Climate Reconstructions # Parameter_Keywords: air temperature # Dataset_DOI: # #------------------ # Contribution_Date # Date: 2020-04-15 #------------------ # File_Last_Modified_Date # Date: 2020-05-16 #------------------ # Title # Study_Name: Sokli, Finland Air Temperature Reconstructions during the Holocene #------------------ # Investigators # Investigators: Shala, Shyhrete; Helmens, Karin F.; Luoto, Tomi P.; Salonen, J. Sakari; Väliranta, Minna; Weckström, Jan #------------------ # Description_Notes_and_Keywords # Description: This dataset was contributed as part of the Temperature-12k project (https://doi.org/10.25921/4RY2-G808). Data were contributed to the project from the original data generators, who are listed in the Investigator field of this template file. Additional notes regarding the use of these data in the Temperature-12k project can be found in the LiPD file listed as an Online_Resource of this template file. #------------------ # Publication # Authors: Shala, Shyhrete, Karin F. Helmens, Tomi P. Luoto, J. Sakari Salonen, Minna Väliranta, and Jan Weckström # Published_Date_or_Year: 2017 # Published_Title: Comparison of quantitative Holocene temperature reconstructions using multiple proxies from a northern boreal lake # Journal_Name: The Holocene # Volume: 27 # Edition: # Issue: 11 # Pages: 1745-1755 # Report: # DOI: 10.1177/0959683617708442 # Online_Resource: # Full_Citation: # Abstract: Four biotic proxies (plant macrofossils, pollen, chironomids and diatoms) are employed to quantitatively reconstruct variations in mean July air temperatures (Tjul) at Lake Loitsana (northern Finland) during the Holocene. The aim is to evaluate the robustness and biases in these temperature reconstructions and to compare the timing of highest Tjul in the individual reconstructions. The reconstructed Tjul values are evaluated in relation to local-scale/site-specific processes associated with the Holocene lake development at Loitsana as these factors have been shown to significantly influence the fossil assemblages found in the Lake Loitsana sediments. While pollen-based temperatures follow the classical trend of gradually increasing early-Holocene Tjul with a mid-Holocene maximum, the aquatic/wetland assemblages reconstruct higher-than-present Tjul already during the early Holocene, that is, at the peak of summer insolation. The relatively low early-Holocene July temperatures recorded by the pollen are the result of site-specific factors possibly combined with a delayed response of the terrestrial ecosystem compared with the aquatic ecosystem. Our study shows that all reconstructions are influenced at least to some extent by local factors. This finding stresses the need to evaluate quantitatively reconstructed climate values against local lake development and highlights the benefit of using multi-proxy data in Holocene climate reconstructions. #------------------ # Publication # Authors: Kaufman, D., N. McKay, C. Routson, M. Erb, B. Davis, O. Heiri, S. Jaccard, J. Tierney, C. Dätwyler, Y. Axford, T. Brussel, O. Cartapanis, B. Chase, A. Dawson, A. de Vernal, S. Engels, L. Jonkers, J. Marsicek, P. Moffa-Sánchez, C. Morrill, A. Orsi, K. Rehfeld, K. Saunders, P. S. Sommer, E. Thomas, M. Tonello, M. Tóth, R. Vachula, A. Andreev, S. Bertrand, B. Biskaborn, M. Bringué, S. Brooks, M. Caniupán, M. Chevalier, L. Cwynar, J. Emile-Geay, J. Fegyveresi, A. Feurdean, W. Finsinger, M-C. Fortin, L. Foster, M. Fox, K. Gajewski, M. Grosjean, S. Hausmann, M. Heinrichs, N. Holmes, B. Ilyashuk, E. Ilyashuk, S. Juggins, D. Khider, K. Koinig, P. Langdon, I. Larocque-Tobler, J. Li, A. Lotter, T. Luoto, A. Mackay, E. Magyari, S. Malevich, B. Mark, J. Massaferro, V. Montade, L. Nazarova, E. Novenko, P. Paril, E. Pearson, M. Peros, R. Pienitz, M. Plóciennik, D. Porinchu, A. Potito, A. Rees, S. Reinemann, S. Roberts, N. Rolland, S. Salonen, A. Self, H. Seppä, S. Shala, J-M. St-Jacques, B. Stenni, L. Syrykh, P. Tarrats, K. Taylor, V. van den Bos, G. Velle, E. Wahl, I. Walker, J. Wilmshurst, E. Zhang, S. Zhilich # Published_Date_or_Year: 2020-04-14 # Published_Title: A global database of Holocene paleotemperature records # Journal_Name: Scientific Data # Volume: 7 # Edition: 115 # Issue: # Pages: # Report_Number: # DOI: 10.1038/s41597-020-0445-3 # Online_Resource: https://www.nature.com/articles/s41597-020-0445-3 # Full_Citation: # Abstract: A comprehensive database of paleoclimate records is needed to place recent warming into the longer-term context of natural climate variability. We present a global compilation of quality-controlled, published, temperature-sensitive proxy records extending back 12,000 years through the Holocene. Data were compiled from 679 sites where time series cover at least 4000 years, are resolved at sub-millennial scale (median spacing of 400 years or finer) and have at least one age control point every 3000 years, with cut-off values slackened in data-sparse regions. The data derive from lake sediment (51%), marine sediment (31%), peat (11%), glacier ice (3%), and other natural archives. The database contains 1319 records, including 157 from the Southern Hemisphere. The multi-proxy database comprises paleotemperature time series based on ecological assemblages, as well as biophysical and geochemical indicators that reflect mean annual or seasonal temperatures, as encoded in the database. This database can be used to reconstruct the spatiotemporal evolution of Holocene temperature at global to regional scales, and is publicly available in Linked Paleo Data (LiPD) format. #------------------ # Funding_Agency # Funding_Agency_Name: # Grant: #------------------ # Site_Information # Site_Name: Sokli # Location: Europe>Northern Europe>Scandinavia>Finland # Country: Finland # Northernmost_Latitude: 67.81 # Southernmost_Latitude: 67.81 # Easternmost_Longitude: 29.28 # Westernmost_Longitude: 29.28 # Elevation: 220 #------------------ # Data_Collection # Collection_Name: Sokli.Shala.2017 # Earliest_Year: 10826.5492957746 # Most_Recent_Year: 0.0 # Time_Unit: cal yr BP # Core_Length: # Notes: #------------------ # Species # Species_Name: # Species_Code: # Common_Name: #------------------ # Chronology_Information # Chronology: # OriginalDateID depth_top depth_bottom age_type age uncertainty_old uncertainty_young Include(Y/N) AdditionalNotes # nan 0.0 0.0 Core top 0.0 nan nan Y nan # Poz-45930 29.0 29.0 C14 Uncalibrated 1630.0 35.0 35.0 Y Salix leaf # Poz-40495 130.0 128.0 C14 Uncalibrated 8340.0 50.0 50.0 N Betula seed # Poz-45928 180.0 180.0 C14 Uncalibrated 4530.0 40.0 40.0 Y Betula leaf # Poz-40496 347.0 347.0 C14 Uncalibrated 6020.0 40.0 40.0 Y small twig # Poz-40497 508.0 508.0 C14 Uncalibrated 7960.0 60.0 60.0 Y Betula leaf # Poz-40498 603.0 600.0 C14 Uncalibrated 8450.0 70.0 70.0 Y Betula seed and leaf remains # Poz-38945 664.0 662.0 C14 Uncalibrated 8630.0 130.0 130.0 Y Betula seed # Poz-35511 734.0 734.0 C14 Uncalibrated 9410.0 50.0 50.0 Y Betula seed # Poz-43852 760.0 755.0 C14 Uncalibrated 9370.0 110.0 110.0 Y Betula seed # Poz-38946 765.0 760.0 C14 Uncalibrated 10080.0 70.0 70.0 N Betula seeds and leaf fragments #------------------ # Variables # # Data variables follow that are preceded by "##" in columns one and two. # Variables list, one per line, shortname-tab-longname components (9 components: what, material, error, units, seasonality, archive, detail, method, C or N for Character or Numeric data) # ## OriginalSampleID sample identification,,,,,insect;paleolimnology;climate reconstructions,,,C,OriginalSampleID ## depth depth,,,centimeter,,insect;paleolimnology;climate reconstructions,,,N,Sample thickness varies throughout core ## age age,,,calendar year before present,,insect;paleolimnology;climate reconstructions,,,N,; lowermost 4 ages based on interpolation ## ageMin age,,range lower bound,calendar year before present,,insect;paleolimnology;climate reconstructions,,,N, ## AgeOld age,,range upper bound,calendar year before present,,insect;paleolimnology;climate reconstructions,,,N, ## temperature surface air temperature,midge assemblage,,degree Celsius,Jul,insect;paleolimnology;climate reconstructions,,,N,139-lake Finnish calibration dataset (Luoto et al. 2014a; 2014b); WAPLS ## uncertaintyHigh surface air temperature,midge assemblage,unspecified error upper bound,degree Celsius,Jul,insect;paleolimnology;climate reconstructions,,,N, ## uncertaintyLow surface air temperature,midge assemblage,unspecified error lower bound,degree Celsius,Jul,insect;paleolimnology;climate reconstructions,,,N, ## ReliabIeYN1 notes,,,,,insect;paleolimnology;climate reconstructions,,,C,Data are reliable (Yes or No) ## nonReliableTemperature temperature,midge assemblage,,degree Celsius,,insect;paleolimnology;climate reconstructions,,,N,non-reliable temperature # #------------------ # Data: # Data lines follow (have no #) # Data line format - tab-delimited text, variable short name as header # Missing_Values: nan # OriginalSampleID depth age ageMin AgeOld temperature uncertaintyHigh uncertaintyLow ReliabIeYN1 nonReliableTemperature 1.0 1.0 0.0 -8.0 10.0 15.2273 16.098696 14.355904 y nan 8.0 8.0 363.0 311.0 392.0 13.8342 14.70437 12.96403 y nan 38.0 38.0 1805.0 1599.0 1915.0 14.0867 14.95481 13.21859 y nan 68.0 68.0 2936.0 2676.0 3085.0 13.9087 14.778454 13.038946 y nan 98.0 98.0 3790.0 3546.0 3951.0 13.8032 14.676721 12.929679 y nan 113.0 113.0 4132.0 3922.0 4291.0 13.9097 14.78063 13.03877 y nan 128.0 128.0 4427.0 4243.0 4583.0 13.2194 14.100628 12.338172 y nan 144.0 144.0 4698.0 4547.0 4847.0 12.773 13.653192 11.892808 y nan 158.0 158.0 4906.0 4776.0 5046.0 12.0299 12.923516 11.136284 y nan 173.0 173.0 5104.0 4987.0 5237.0 11.9338 12.824022 11.043578 y nan 188.0 188.0 5285.0 5171.0 5415.0 11.8645 12.756468 10.972532 y nan 203.0 203.0 5454.0 5334.0 5591.0 12.2619 13.146256 11.377544 y nan 218.0 218.0 5612.0 5489.0 5755.0 12.6396 13.511013 11.768187 y nan 229.0 229.0 5723.0 5599.0 5868.0 12.9011 13.802591 11.999609 y nan 239.0 239.0 5820.0 5697.0 5965.0 12.3877 13.257467 11.517933 y nan 248.0 248.0 5906.0 5784.0 6050.0 12.2956 13.169415 11.421785 y nan 259.0 259.0 6009.0 5890.0 6149.0 13.4767 14.359018 12.594382 y nan 269.0 269.0 6102.0 5986.0 6238.0 11.4985 12.37699 10.62001 y nan 278.0 278.0 6186.0 6073.0 6318.0 12.0773 12.958055 11.196545 y nan 289.0 289.0 6289.0 6180.0 6414.0 13.7211 14.606505 12.835695 y nan 299.0 299.0 6383.0 6279.0 6505.0 13.7059 14.581922 12.829878 y nan 308.0 308.0 6470.0 6370.0 6587.0 13.9824 14.867586 13.097214 y nan 319.0 319.0 6579.0 6485.0 6694.0 12.7371 13.625634 11.848566 y nan 329.0 329.0 6681.0 6592.0 6798.0 13.5857 14.460295 12.711105 y nan 338.0 338.0 6776.0 6691.0 6894.0 12.4311 13.305877 11.556323 y nan 349.0 349.0 6897.0 6812.0 7015.0 12.4662 13.339869 11.592531 y nan 359.0 359.0 7013.0 6925.0 7132.0 12.5125 13.383228 11.641772 y nan 368.0 368.0 7120.0 7026.0 7238.0 12.0391 12.910749 11.167451 y nan 379.0 379.0 7256.0 7151.0 7374.0 12.1512 13.020353 11.282047 y nan 389.0 389.0 7381.0 7268.0 7503.0 10.8015 11.684933 9.918067 y nan 398.0 398.0 7496.0 7373.0 7622.0 12.4733 13.346825 11.599775 y nan 409.0 409.0 7638.0 7504.0 7769.0 11.7397 12.601852 10.877548 y nan 419.0 419.0 7767.0 7622.0 7904.0 11.5486 12.431022 10.666178 y nan 428.0 428.0 7882.0 7729.0 8024.0 12.7278 13.600988 11.854612 y nan 439.0 439.0 8022.0 7859.0 8170.0 12.5123 13.407651 11.616949 y nan 449.0 449.0 8148.0 7976.0 8301.0 11.2994 12.194041 10.404759 y nan 459.0 459.0 8270.0 8092.0 8427.0 11.9418 12.808289 11.075311 y nan 468.0 468.0 8377.0 8196.0 8536.0 13.0837 13.944118 12.223282 y nan 473.0 473.0 8435.0 8253.0 8595.0 12.5438 13.399951 11.687649 y nan 484.0 484.0 8559.0 8376.0 8717.0 12.9092 13.789997 12.028403 y nan 494.0 494.0 8666.0 8487.0 8820.0 12.6391 13.52187 11.75633 y nan 503.0 503.0 8756.0 8584.0 8907.0 15.5223 16.406157 14.638443 y nan 514.0 514.0 8859.0 8692.0 9005.0 14.2993 15.173238 13.425362 y nan 524.0 524.0 8946.0 8783.0 9086.0 11.8296 12.717714 10.941486 y nan 533.0 533.0 9018.0 8861.0 9152.0 13.3586 14.227699 12.489501 y nan 544.0 544.0 9100.0 8948.0 9226.0 14.53 15.40484 13.65516 y nan 554.0 554.0 9169.0 9020.0 9287.0 14.83 15.711845 13.948155 y nan 563.0 563.0 9226.0 9079.0 9336.0 14.9468 15.817406 14.076194 y nan 574.0 574.0 9292.0 9147.0 9391.0 14.2011 15.065995 13.336205 y nan 584.0 584.0 9348.0 9204.0 9436.0 14.5901 15.468648 13.711552 y nan 593.0 593.0 9396.0 9249.0 9475.0 14.012 14.884207 13.139793 y nan 604.0 604.0 9452.0 9299.0 9543.0 13.9783 14.847076 13.109524 y nan 614.0 614.0 9501.0 9342.0 9621.0 13.782 14.653752 12.910248 y nan 623.0 623.0 9547.0 9380.0 9699.0 14.7296 15.593975 13.865225 y nan 634.0 634.0 9607.0 9433.0 9800.0 15.2097 16.093043 14.326357 y nan 644.0 644.0 9668.0 9490.0 9894.0 13.9688 14.868899 13.068701 y nan 653.0 653.0 9731.0 9555.0 9982.0 15.8855 16.75168 15.01932 y nan 664.0 664.0 9821.0 9647.0 10087.0 13.8116 14.70296 12.92024 y nan 673.0 673.0 9906.0 9729.0 10172.0 15.0504 15.928192 14.172608 y nan 683.0 683.0 10011.0 9829.0 10265.0 15.412 16.279983 14.544017 y nan 693.0 693.0 10122.0 9933.0 10350.0 17.6644 18.539797 16.789003 y nan 704.0 704.0 10246.0 10052.0 10438.0 13.6384 14.540377 12.736423 y nan 713.0 713.0 10345.0 10150.0 10505.0 14.5857 15.4478 13.7236 y nan 724.0 724.0 10460.0 10263.0 10581.0 15.0621 15.917043 14.207157 y nan 732.0 732.0 10536.0 10342.0 10645.0 15.0649 15.946989 14.182811 y nan 743.0 743.0 10627.0 10438.0 10796.0 15.3869 16.248784 14.525016 y nan 753.0 753.0 10700.0 10507.0 10943.0 13.2959 14.16562 12.42618 y nan 773.0 773.0 10745.5633802817 10547.5633802817 11028.5633802817 14.1865 15.044061 13.328939 y nan 810.5 810.5 10771.6197183098 10573.6197183098 11054.6197183098 12.3105 13.242897 11.378103 y nan 848.0 848.0 10798.3802816901 10600.3802816901 11081.3802816901 nan 8.621155 6.661385 N 7.64 888.0 888.0 10826.5492957746 10628.5492957746 11109.5492957746 nan 7.68999 5.26013 N 6.48