# Cave KNI-51, Western Australia 8,800 Year Stalagmite d18O Data #---------------------------------------------------- # World Data Service for Paleoclimatology, Boulder # and # NOAA Paleoclimatology Program # National Centers for Environmental Information (NCEI) #---------------------------------------------------- # Template Version 4.0 # Encoding: UTF-8 # NOTE: Please cite original publication, NOAA Landing Page URL, dataset and publication DOIs (where available), and date accessed when using downloaded data. If there is no publication information, please cite investigator, study title, NOAA Landing Page URL, and date accessed. # # Description/Documentation lines begin with # # Data lines have no # # # NOAA_Landing_Page: https://www.ncei.noaa.gov/access/paleo-search/study/20530 # Landing_Page_Description: NOAA Landing Page of this file's parent study, which includes all study metadata. # # Study_Level_JSON_Metadata: https://www.ncei.noaa.gov/pub/data/metadata/published/paleo/json/noaa-cave-20530.json # Study_Level_JSON_Description: JSON metadata of this data file's parent study, which includes all study metadata. # # Data_Type: Speleothems # # Dataset_DOI: 10.25921/htg9-m613 # # Science_Keywords: Monsoon #-------------------- # Resource_Links # # Data_Download_Resource: https://www.ncei.noaa.gov/pub/data/paleo/speleothem/australia/kni-51-N-2016d18o-noaa.txt # Data_Download_Description: NOAA Template File; Stalagmite KNI-51-N d18O Data # #-------------------- # Contribution_Date # Date: 2016-09-29 #-------------------- # File_Last_Modified_Date # Date: 2025-03-20 #-------------------- # Title # Study_Name: Cave KNI-51, Western Australia 8,800 Year Stalagmite d18O Data #-------------------- # Investigators # Investigators: Denniston, R.F.(https://orcid.org/0000-0002-6346-1221); Ummenhofer, C.C.(https://orcid.org/0000-0002-9163-3967); Wanamaker, A.D.(https://orcid.org/0000-0002-6560-6420); Lachniet, M.S.(https://orcid.org/0000-0001-5250-0144); Villarini, G.(https://orcid.org/0000-0001-9566-2370); Asmerom, Y.(https://orcid.org/0000-0003-3440-1294); Polyak, V.J.(https://orcid.org/0000-0002-2010-1066); Passaro, K.J.; Cugley, J.(https://orcid.org/0000-0002-6827-875X); Woods, D.(https://orcid.org/0000-0001-6264-2218); Humphreys, W.F. #-------------------- # Description_Notes_and_Keywords # Description: Stalagmite oxygen isotope (d18O) data for 18 calcite and aragonite stalagmites collected in Cave KNI-51, tropical Western Australia, providing a paleomonsoon record for the past 8,800 years. Note: d18O values for stalagmite KNI-51-10 have been decreased by 1 per mil. Provided Keywords: stalagmite, oxygen isotope, Australia, monsoon, tropical rain belt. # # Data file updated 7/26/2017. In the data section of the file, ages were corrected for the stable isotope data of stalagmites KNI-51-10, KNI-51-A2-side 1, and KNI-51-A2-side 2. Stalagmite labels were corrected for stalagmites KNI-51-A2-side 1 and KNI-51-A2-side 2 (previously were mistakenly labelled as KNI-51-A1-side 1 and KNI-51-A1-side 2). In the Chronology section, distances for U-Th dates in stalagmite KNI-51-A2-side 1 and KNI-51-A2-side 2 were corrected, and ages for U-Th dates in stalagmite KNI-51-A2-side 1 and KNI-51-A2-side 2 were corrected. # # Additional assigned age corrections were made to this file 7-February-2018. #-------------------- # Publication # Authors: Denniston, R.F., Wyrwoll, K.-H., Polyak, Brown, J. Asmerom, Y., Wanamaker, A. Jr., LaPointe, Z., Ellerbroek, R., Barthelmes, M., Cleary, D., Cugley, J., Woods, D., Humphreys, W. # Journal_Name: Quaternary Science Reviews # Published_Title: A Stalagmite Record of Holocene Indonesian-Australian Summer Monsoon Variability from the Australian Tropics # Published_Date_or_Year: 2013 # Volume: 78 # Pages: 155-168 # Issue: # Report_Number: # DOI: 10.1016/j.quascirev.2013.08.004 # Full_Citation: # Abstract: Oxygen isotopic data from a suite of calcite and aragonite stalagmites from cave KNI-51, located in the eastern Kimberley region of tropical Western Australia, represent the first absolute-dated, high-resolution speleothem record of the Holocene Indonesian-Australian summer monsoon (IASM) from the Australian tropics. Stalagmite oxygen isotopic values track monsoon intensity via amount effects in precipitation and reveal a dynamic Holocene IASM which strengthened in the early Holocene, decreased in strength by 4 ka, with a further decrease from 2 to 1 ka, before strengthening again at 1 ka to years to levels similar to those between 4 and 2 ka. The relationships between the KNI-51 IASM reconstruction and those from published speleothem time series from Flores and Borneo, in combination with other data sets, appear largely inconsistent with changes in the position and/or organization of the Intertropical Convergence Zone (ITCZ). Instead, we argue that the El Nino/Southern Oscillation (ENSO) may have played a dominant role in driving IASM variability since at least the middle Holocene. Given the muted modern monsoon rainfall responses to most El Nino events in the Kimberley, an impact of ENSO on regional monsoon precipitation over northwestern Australia would suggest non-stationarity in the long-term relationship between ENSO forcing and IASM rainfall, possibly due to changes in the mean state of the tropical Pacific over the Holocene. #-------------------- # Authors: Rhawn F. Denniston, Caroline C. Ummenhofer, Alan D. Wanamaker, Matthew S. Lachniet, Gabriele Villarini, Yemane Asmerom, Victor J. Polyak, Kristian J. Passaro, John Cugley, David Woods, and William F. Humphreys # Journal_Name: Scientific Reports # Published_Title: Expansion and Contraction of the Indo-Pacific Tropical Rain Belt over the Last Three Millennia # Published_Date_or_Year: 2016 # Volume: 6 # Pages: # Issue: # Report_Number: # DOI: 10.1038/srep34485 # Full_Citation: # Abstract: The seasonal north-south migration of the intertropical convergence zone (ITCZ) defines the tropical rain belt (TRB), a region of enormous terrestrial and marine biodiversity and home to 40% of people on Earth. The TRB is dynamic and has been shown to shift south as a coherent system during periods of Northern Hemisphere cooling. However, recent studies of Indo-Pacific hydroclimate suggest that during the Little Ice Age (LIA; AD 1400-1850), the TRB in this region contracted rather than being displaced uniformly southward. This behaviour is not well understood, particularly during climatic fluctuations less pronounced than those of the LIA, the largest centennial-scale cool period of the last millennium. Here we show that the Indo-Pacific TRB expanded and contracted numerous times over multi-decadal to centennial scales during the last 3,000 yr. By integrating precisely-dated stalagmite records of tropical hydroclimate from southern China with a newly enhanced stalagmite time series from northern Australia, our study reveals a previously unidentified coherence between the austral and boreal summer monsoon. State-of-the-art climate model simulations of the last millennium suggest these are linked to changes in the structure of the regional manifestation of the atmosphere's meridional circulation. #-------------------- # Authors: Rhawn F. Denniston, Gabriele Villarini, Angelique N. Gonzales, Karl-Heinz Wyrwoll, Victor J. Polyak, Caroline C. Ummenhofer, Matthew S. Lachniet, Alan D. Wanamaker, Jr, William F. Humphreys, David Woods, and John Cugley # Journal_Name: Proceedings of the National Academy of Sciences # Published_Title: Extreme rainfall activity in the Australian tropics reflects changes in the El Niño/Southern Oscillation over the last two millennia # Published_Date_or_Year: 2015 # Volume: 112 # Pages: 4576-4581 # Issue: 15 # Report_Number: # DOI: 10.1073/pnas.1422270112 # Full_Citation: # Abstract: Assessing temporal variability in extreme rainfall events before the historical era is complicated by the sparsity of long-term "direct" storm proxies. Here we present a 2,200-y-long, accurate, and precisely dated record of cave flooding events from the northwest Australian tropics that we interpret, based on an integrated analysis of meteorological data and sediment layers within stalagmites, as representing a proxy for extreme rainfall events derived primarily from tropical cyclones (TCs) and secondarily from the regional summer monsoon. This time series reveals substantial multicentennial variability in extreme rainfall, with elevated occurrence rates characterizing the twentieth century, 850-1450 CE (Common Era), and 50-400 CE; reduced activity marks 1450-1650 CE and 500-850 CE. These trends are similar to reconstructed numbers of TCs in the North Atlantic and Caribbean basins, and they form temporal and spatial patterns best explained by secular changes in the dominant mode of the El Niño/Southern Oscillation (ENSO), the primary driver of modern TC variability. We thus attribute long-term shifts in cyclogenesis in both the central Australian and North Atlantic sectors over the past two millennia to entrenched El Niño or La Niña states of the tropical Pacific. The influence of ENSO on monsoon precipitation in this region of northwest Australia is muted, but ENSO-driven changes to the monsoon may have complemented changes to TC activity. #-------------------- # Funding_Agency # Funding_Agency_Name: US National Science Foundation # Grant: AGS-1103413 #-------------------- # Site_Information # Site_Name: Cave KNI-51 # Location: Western Australia # Northernmost_Latitude: -15.18 # Southernmost_Latitude: -15.18 # Easternmost_Longitude: 128.37 # Westernmost_Longitude: 128.37 # Elevation_m: 100 #-------------------- # Data_Collection # Collection_Name: KNI-51-N-2016d18O # First_Year: 2907 # Last_Year: 2575 # Time_Unit: cal yr BP # Core_Length_m: # Parameter_Keywords: oxygen isotopes # Notes: #-------------------- # Chronology_Information # Chronology: Uranium-Thorium # Chronology_Download_Resource: https://www.ncei.noaa.gov/pub/data/paleo/templates/noaa-wds-paleo-uth-terms.csv # Chronology_Download_Description: Uranium-Thorium terms and definitions. # Chronology_Notes: Samples with asterisks were published in Denniston et al. (2015); all others reported in Denniston et al. (2013) # Rejection_Rationale: # 238U_Decay_Constant: Cheng et al., 2000 # 234U_Decay_Constant: Cheng et al., 2000 # 230Th_Decay_Constant: Cheng et al., 2000 # Initial_230Th/232Th: 4.4 × 10−6 ± 4.4 × 10−6 # Initial_230Th/232Th_Method: Average crustal silicate ratio # Age_Model_Method: # Missing_Values: na # Chronology_Table: # core_id material_dated depth_bot_mm 238U_ppm 232Th_ppb d234U_init_permil d234U_init_2s_permil 230Th_238U_act 230Th_238U_act_2s 230Th_232Th_atom_ppm 230Th_232Th_atom_2s_ppm age_uncorr_BM age_uncorr_2s_yr age_corr_BP1950 age_corr_2s_yr # KNI-51-N aragonite 460 8669 4687 878.0 1.9 0.047 0.00006 1427 17.1 2756 5 2687 6 # KNI-51-N aragonite 223 10333 14524 844.5 1.9 0.047 0.00006 556 1.7 2845 5 2763 12 # KNI-51-N aragonite 25 3982 5123 899.7 1.9 0.051 0.00009 653 9.4 2971 6 2891 12 #-------------------- # Variables # PaST_Thesaurus_Download_Resource: https://www.ncei.noaa.gov/access/paleo-search/skos/past-thesaurus.rdf # PaST_Thesaurus_Download_Description: Paleoenvironmental Standard Terms (PaST) Thesaurus terms, definitions, and relationships in SKOS format. # # Data variables follow that are preceded by '##' in columns one and two. # Variables list, one per line, shortname-tab-var components: what, material, error, units, seasonality, data type, detail, method, C or N for Character or Numeric data) # ## sampleID sample identification,,,,,speleothems,,,C,Stalagmite ID ## depth_mm depth,,,millimeter,,speleothems,,,N,distance from base ## mineral notes,,,,,speleothems,,,C,calcite or aragonite ## age_calBP age,,,calendar year before present,,speleothems,,,N, ## d18OcarbVPDB delta 18O,calcium carbonate,,per mil VPDB,,speleothems,raw,isotope ratio mass spectrometry,N, #-------------------- # Data: # Data lines follow (have no #) # Data line format - tab-delimited text, variable short name as header # Missing_Values: sampleID depth_mm mineral age_calBP d18OcarbVPDB KNI-51-N 5 aragonite 2907 -6.47 KNI-51-N 10 aragonite 2903 -6.89 KNI-51-N 20 aragonite 2895 -6.58 KNI-51-N 30 aragonite 2887 -6.03 KNI-51-N 40 aragonite 2879 -7.85 KNI-51-N 50 aragonite 2871 -6.97 KNI-51-N 60 aragonite 2863 -6.26 KNI-51-N 70 aragonite 2855 -6.25 KNI-51-N 80 aragonite 2847 -6.96 KNI-51-N 90 aragonite 2839 -6.24 KNI-51-N 100 aragonite 2831 -6.84 KNI-51-N 110 aragonite 2823 -7.18 KNI-51-N 120 aragonite 2815 -6.30 KNI-51-N 130 aragonite 2807 -6.42 KNI-51-N 140 aragonite 2799 -6.55 KNI-51-N 150 aragonite 2791 -6.92 KNI-51-N 160 aragonite 2783 -7.49 KNI-51-N 170 aragonite 2775 -6.87 KNI-51-N 180 aragonite 2767 -6.95 KNI-51-N 190 aragonite 2759 -7.07 KNI-51-N 200 aragonite 2751 -6.93 KNI-51-N 210 aragonite 2743 -7.13 KNI-51-N 220 aragonite 2735 -7.72 KNI-51-N 230 aragonite 2727 -7.06 KNI-51-N 240 aragonite 2719 -6.97 KNI-51-N 250 aragonite 2711 -7.66 KNI-51-N 260 aragonite 2703 -7.16 KNI-51-N 270 aragonite 2695 -6.71 KNI-51-N 280 aragonite 2687 -6.73 KNI-51-N 290 aragonite 2679 -7.27 KNI-51-N 300 aragonite 2671 -6.32 KNI-51-N 310 aragonite 2663 -6.04 KNI-51-N 320 aragonite 2655 -6.93 KNI-51-N 330 aragonite 2647 -6.74 KNI-51-N 340 aragonite 2639 -6.75 KNI-51-N 350 aragonite 2631 -6.17 KNI-51-N 360 aragonite 2623 -7.00 KNI-51-N 370 aragonite 2615 -7.28 KNI-51-N 380 aragonite 2607 -7.97 KNI-51-N 390 aragonite 2599 -7.32 KNI-51-N 400 aragonite 2591 -7.06 KNI-51-N 410 aragonite 2583 -6.49 KNI-51-N 420 aragonite 2575 -6.52