# Cave KNI-51, Western Australia 8,800 Year Stalagmite d18O Data #---------------------------------------------------- # World Data Service for Paleoclimatology, Boulder # and # NOAA Paleoclimatology Program # National Centers for Environmental Information (NCEI) #---------------------------------------------------- # Template Version 4.0 # Encoding: UTF-8 # NOTE: Please cite original publication, NOAA Landing Page URL, dataset and publication DOIs (where available), and date accessed when using downloaded data. If there is no publication information, please cite investigator, study title, NOAA Landing Page URL, and date accessed. # # Description/Documentation lines begin with # # Data lines have no # # # NOAA_Landing_Page: https://www.ncei.noaa.gov/access/paleo-search/study/20530 # Landing_Page_Description: NOAA Landing Page of this file's parent study, which includes all study metadata. # # Study_Level_JSON_Metadata: https://www.ncei.noaa.gov/pub/data/metadata/published/paleo/json/noaa-cave-20530.json # Study_Level_JSON_Description: JSON metadata of this data file's parent study, which includes all study metadata. # # Data_Type: Speleothems # # Dataset_DOI: 10.25921/htg9-m613 # # Science_Keywords: Monsoon #-------------------- # Resource_Links # # Data_Download_Resource: https://www.ncei.noaa.gov/pub/data/paleo/speleothem/australia/kni-51-P-2016d18o-noaa.txt # Data_Download_Description: NOAA Template File; Stalagmite KNI-51-P d18O Data # #-------------------- # Contribution_Date # Date: 2016-09-29 #-------------------- # File_Last_Modified_Date # Date: 2025-03-20 #-------------------- # Title # Study_Name: Cave KNI-51, Western Australia 8,800 Year Stalagmite d18O Data #-------------------- # Investigators # Investigators: Denniston, R.F.(https://orcid.org/0000-0002-6346-1221); Ummenhofer, C.C.(https://orcid.org/0000-0002-9163-3967); Wanamaker, A.D.(https://orcid.org/0000-0002-6560-6420); Lachniet, M.S.(https://orcid.org/0000-0001-5250-0144); Villarini, G.(https://orcid.org/0000-0001-9566-2370); Asmerom, Y.(https://orcid.org/0000-0003-3440-1294); Polyak, V.J.(https://orcid.org/0000-0002-2010-1066); Passaro, K.J.; Cugley, J.(https://orcid.org/0000-0002-6827-875X); Woods, D.(https://orcid.org/0000-0001-6264-2218); Humphreys, W.F. #-------------------- # Description_Notes_and_Keywords # Description: Stalagmite oxygen isotope (d18O) data for 18 calcite and aragonite stalagmites collected in Cave KNI-51, tropical Western Australia, providing a paleomonsoon record for the past 8,800 years. Note: d18O values for stalagmite KNI-51-10 have been decreased by 1 per mil. Provided Keywords: stalagmite, oxygen isotope, Australia, monsoon, tropical rain belt. # # Data file updated 7/26/2017. In the data section of the file, ages were corrected for the stable isotope data of stalagmites KNI-51-10, KNI-51-A2-side 1, and KNI-51-A2-side 2. Stalagmite labels were corrected for stalagmites KNI-51-A2-side 1 and KNI-51-A2-side 2 (previously were mistakenly labelled as KNI-51-A1-side 1 and KNI-51-A1-side 2). In the Chronology section, distances for U-Th dates in stalagmite KNI-51-A2-side 1 and KNI-51-A2-side 2 were corrected, and ages for U-Th dates in stalagmite KNI-51-A2-side 1 and KNI-51-A2-side 2 were corrected. # # Additional assigned age corrections were made to this file 7-February-2018. #-------------------- # Publication # Authors: Denniston, R.F., Wyrwoll, K.-H., Polyak, Brown, J. Asmerom, Y., Wanamaker, A. Jr., LaPointe, Z., Ellerbroek, R., Barthelmes, M., Cleary, D., Cugley, J., Woods, D., Humphreys, W. # Journal_Name: Quaternary Science Reviews # Published_Title: A Stalagmite Record of Holocene Indonesian-Australian Summer Monsoon Variability from the Australian Tropics # Published_Date_or_Year: 2013 # Volume: 78 # Pages: 155-168 # Issue: # Report_Number: # DOI: 10.1016/j.quascirev.2013.08.004 # Full_Citation: # Abstract: Oxygen isotopic data from a suite of calcite and aragonite stalagmites from cave KNI-51, located in the eastern Kimberley region of tropical Western Australia, represent the first absolute-dated, high-resolution speleothem record of the Holocene Indonesian-Australian summer monsoon (IASM) from the Australian tropics. Stalagmite oxygen isotopic values track monsoon intensity via amount effects in precipitation and reveal a dynamic Holocene IASM which strengthened in the early Holocene, decreased in strength by 4 ka, with a further decrease from 2 to 1 ka, before strengthening again at 1 ka to years to levels similar to those between 4 and 2 ka. The relationships between the KNI-51 IASM reconstruction and those from published speleothem time series from Flores and Borneo, in combination with other data sets, appear largely inconsistent with changes in the position and/or organization of the Intertropical Convergence Zone (ITCZ). Instead, we argue that the El Nino/Southern Oscillation (ENSO) may have played a dominant role in driving IASM variability since at least the middle Holocene. Given the muted modern monsoon rainfall responses to most El Nino events in the Kimberley, an impact of ENSO on regional monsoon precipitation over northwestern Australia would suggest non-stationarity in the long-term relationship between ENSO forcing and IASM rainfall, possibly due to changes in the mean state of the tropical Pacific over the Holocene. #-------------------- # Authors: Rhawn F. Denniston, Caroline C. Ummenhofer, Alan D. Wanamaker, Matthew S. Lachniet, Gabriele Villarini, Yemane Asmerom, Victor J. Polyak, Kristian J. Passaro, John Cugley, David Woods, and William F. Humphreys # Journal_Name: Scientific Reports # Published_Title: Expansion and Contraction of the Indo-Pacific Tropical Rain Belt over the Last Three Millennia # Published_Date_or_Year: 2016 # Volume: 6 # Pages: # Issue: # Report_Number: # DOI: 10.1038/srep34485 # Full_Citation: # Abstract: The seasonal north-south migration of the intertropical convergence zone (ITCZ) defines the tropical rain belt (TRB), a region of enormous terrestrial and marine biodiversity and home to 40% of people on Earth. The TRB is dynamic and has been shown to shift south as a coherent system during periods of Northern Hemisphere cooling. However, recent studies of Indo-Pacific hydroclimate suggest that during the Little Ice Age (LIA; AD 1400-1850), the TRB in this region contracted rather than being displaced uniformly southward. This behaviour is not well understood, particularly during climatic fluctuations less pronounced than those of the LIA, the largest centennial-scale cool period of the last millennium. Here we show that the Indo-Pacific TRB expanded and contracted numerous times over multi-decadal to centennial scales during the last 3,000 yr. By integrating precisely-dated stalagmite records of tropical hydroclimate from southern China with a newly enhanced stalagmite time series from northern Australia, our study reveals a previously unidentified coherence between the austral and boreal summer monsoon. State-of-the-art climate model simulations of the last millennium suggest these are linked to changes in the structure of the regional manifestation of the atmosphere's meridional circulation. #-------------------- # Authors: Rhawn F. Denniston, Gabriele Villarini, Angelique N. Gonzales, Karl-Heinz Wyrwoll, Victor J. Polyak, Caroline C. Ummenhofer, Matthew S. Lachniet, Alan D. Wanamaker, Jr, William F. Humphreys, David Woods, and John Cugley # Journal_Name: Proceedings of the National Academy of Sciences # Published_Title: Extreme rainfall activity in the Australian tropics reflects changes in the El Niño/Southern Oscillation over the last two millennia # Published_Date_or_Year: 2015 # Volume: 112 # Pages: 4576-4581 # Issue: 15 # Report_Number: # DOI: 10.1073/pnas.1422270112 # Full_Citation: # Abstract: Assessing temporal variability in extreme rainfall events before the historical era is complicated by the sparsity of long-term "direct" storm proxies. Here we present a 2,200-y-long, accurate, and precisely dated record of cave flooding events from the northwest Australian tropics that we interpret, based on an integrated analysis of meteorological data and sediment layers within stalagmites, as representing a proxy for extreme rainfall events derived primarily from tropical cyclones (TCs) and secondarily from the regional summer monsoon. This time series reveals substantial multicentennial variability in extreme rainfall, with elevated occurrence rates characterizing the twentieth century, 850-1450 CE (Common Era), and 50-400 CE; reduced activity marks 1450-1650 CE and 500-850 CE. These trends are similar to reconstructed numbers of TCs in the North Atlantic and Caribbean basins, and they form temporal and spatial patterns best explained by secular changes in the dominant mode of the El Niño/Southern Oscillation (ENSO), the primary driver of modern TC variability. We thus attribute long-term shifts in cyclogenesis in both the central Australian and North Atlantic sectors over the past two millennia to entrenched El Niño or La Niña states of the tropical Pacific. The influence of ENSO on monsoon precipitation in this region of northwest Australia is muted, but ENSO-driven changes to the monsoon may have complemented changes to TC activity. #-------------------- # Funding_Agency # Funding_Agency_Name: US National Science Foundation # Grant: AGS-1103413 #-------------------- # Site_Information # Site_Name: Cave KNI-51 # Location: Western Australia # Northernmost_Latitude: -15.18 # Southernmost_Latitude: -15.18 # Easternmost_Longitude: 128.37 # Westernmost_Longitude: 128.37 # Elevation_m: 100 #-------------------- # Data_Collection # Collection_Name: KNI-51-P-2016d18O # First_Year: 2052 # Last_Year: 1733 # Time_Unit: cal yr BP # Core_Length_m: # Parameter_Keywords: oxygen isotopes # Notes: #-------------------- # Chronology_Information # Chronology: Uranium-Thorium # Chronology_Download_Resource: https://www.ncei.noaa.gov/pub/data/paleo/templates/noaa-wds-paleo-uth-terms.csv # Chronology_Download_Description: Uranium-Thorium terms and definitions. # Chronology_Notes: Samples with asterisks were published in Denniston et al. (2015); all others reported in Denniston et al. (2013) # Rejection_Rationale: # 238U_Decay_Constant: Cheng et al., 2000 # 234U_Decay_Constant: Cheng et al., 2000 # 230Th_Decay_Constant: Cheng et al., 2000 # Initial_230Th/232Th: 4.4 × 10−6 ± 4.4 × 10−6 # Initial_230Th/232Th_Method: Average crustal silicate ratio # Age_Model_Method: # Missing_Values: na # Chronology_Table: # core_id material_dated depth_bot_mm 238U_ppm 232Th_ppb d234U_init_permil d234U_init_2s_permil 230Th_238U_act 230Th_238U_act_2s 230Th_232Th_atom_ppm 230Th_232Th_atom_2s_ppm age_uncorr_BM age_uncorr_2s_yr age_corr_BP1950 age_corr_2s_yr # KNI-51-P aragonite 495 8539 14907 871.0 1.9 0.031 0.00005 295 1.7 1838 4 1751 27 # KNI-51-P aragonite 405 6233 2774 895.9 1.9 0.032 0.00005 1182 28.7 1853 4 1786 8 # KNI-51-P aragonite 381 7594 13881 850.4 1.9 0.031 0.00005 283 1.8 1867 4 1778 29 # KNI-51-P aragonite 229 7440 15031 895.0 1.9 0.035 0.00013 284 1.4 2026 8 1935 32 # KNI-51-P aragonite 54 6754 17352 831.1 1.8 0.035 0.00004 225 0.5 2112 3 2011 41 #-------------------- # Variables # PaST_Thesaurus_Download_Resource: https://www.ncei.noaa.gov/access/paleo-search/skos/past-thesaurus.rdf # PaST_Thesaurus_Download_Description: Paleoenvironmental Standard Terms (PaST) Thesaurus terms, definitions, and relationships in SKOS format. # # Data variables follow that are preceded by '##' in columns one and two. # Variables list, one per line, shortname-tab-var components: what, material, error, units, seasonality, data type, detail, method, C or N for Character or Numeric data) # ## sampleID sample identification,,,,,speleothems,,,C,Stalagmite ID ## depth_mm depth,,,millimeter,,speleothems,,,N,distance from base ## mineral notes,,,,,speleothems,,,C,calcite or aragonite ## age_calBP age,,,calendar year before present,,speleothems,,,N, ## d18OcarbVPDB delta 18O,calcium carbonate,,per mil VPDB,,speleothems,raw,isotope ratio mass spectrometry,N, #-------------------- # Data: # Data lines follow (have no #) # Data line format - tab-delimited text, variable short name as header # Missing_Values: sampleID depth_mm mineral age_calBP d18OcarbVPDB KNI-51-P 2.5 aragonite 2052 -7.54 KNI-51-P 5 aragonite 2051 -7.03 KNI-51-P 10 aragonite 2048 -5.79 KNI-51-P 15 aragonite 2044 -5.79 KNI-51-P 20 aragonite 2041 -5.50 KNI-51-P 25 aragonite 2038 -6.22 KNI-51-P 30 aragonite 2035 -7.55 KNI-51-P 35 aragonite 2031 -7.29 KNI-51-P 40 aragonite 2028 -6.25 KNI-51-P 45 aragonite 2025 -6.48 KNI-51-P 50 aragonite 2022 -6.47 KNI-51-P 55 aragonite 2019 -6.34 KNI-51-P 60 aragonite 2015 -5.73 KNI-51-P 65 aragonite 2012 -6.34 KNI-51-P 70 aragonite 2009 -7.06 KNI-51-P 75 aragonite 2006 -6.25 KNI-51-P 80 aragonite 2002 -6.35 KNI-51-P 85 aragonite 1999 -6.46 KNI-51-P 90 aragonite 1996 -5.87 KNI-51-P 95 aragonite 1993 -5.50 KNI-51-P 100 aragonite 1989 -5.49 KNI-51-P 105 aragonite 1986 -6.05 KNI-51-P 110 aragonite 1983 -5.27 KNI-51-P 115 aragonite 1980 -5.89 KNI-51-P 120 aragonite 1977 -5.76 KNI-51-P 125 aragonite 1973 -6.17 KNI-51-P 130 aragonite 1970 -6.19 KNI-51-P 135 aragonite 1967 -6.73 KNI-51-P 140 aragonite 1964 -5.45 KNI-51-P 145 aragonite 1960 -5.72 KNI-51-P 150 aragonite 1957 -5.89 KNI-51-P 155 aragonite 1954 -5.78 KNI-51-P 160 aragonite 1951 -6.22 KNI-51-P 165 aragonite 1948 -5.76 KNI-51-P 170 aragonite 1944 -5.62 KNI-51-P 175 aragonite 1941 -5.82 KNI-51-P 180 aragonite 1938 -5.87 KNI-51-P 185 aragonite 1935 -5.98 KNI-51-P 190 aragonite 1931 -5.40 KNI-51-P 195 aragonite 1928 -6.15 KNI-51-P 200 aragonite 1925 -6.12 KNI-51-P 205 aragonite 1922 -6.37 KNI-51-P 210 aragonite 1919 -6.67 KNI-51-P 215 aragonite 1915 -6.84 KNI-51-P 220 aragonite 1912 -5.82 KNI-51-P 225 aragonite 1909 -7.00 KNI-51-P 230 aragonite 1906 -6.72 KNI-51-P 235 aragonite 1902 -6.46 KNI-51-P 240 aragonite 1899 -6.09 KNI-51-P 245 aragonite 1896 -6.28 KNI-51-P 250 aragonite 1893 -6.69 KNI-51-P 255 aragonite 1889 -7.22 KNI-51-P 260 aragonite 1886 -7.04 KNI-51-P 265 aragonite 1883 -6.15 KNI-51-P 270 aragonite 1880 -6.33 KNI-51-P 275 aragonite 1877 -7.07 KNI-51-P 280 aragonite 1873 -6.78 KNI-51-P 285 aragonite 1870 -6.45 KNI-51-P 290 aragonite 1867 -6.87 KNI-51-P 295 aragonite 1864 -6.77 KNI-51-P 300 aragonite 1860 -7.43 KNI-51-P 305 aragonite 1857 -6.75 KNI-51-P 310 aragonite 1854 -6.55 KNI-51-P 315 aragonite 1851 -6.91 KNI-51-P 320 aragonite 1848 -7.12 KNI-51-P 325 aragonite 1844 -6.75 KNI-51-P 330 aragonite 1841 -6.76 KNI-51-P 335 aragonite 1838 -6.44 KNI-51-P 340 aragonite 1835 -6.33 KNI-51-P 345 aragonite 1831 -6.84 KNI-51-P 350 aragonite 1828 -6.60 KNI-51-P 355 aragonite 1825 -4.96 KNI-51-P 360 aragonite 1822 -6.32 KNI-51-P 365 aragonite 1819 -6.61 KNI-51-P 370 aragonite 1815 -6.90 KNI-51-P 375 aragonite 1812 -6.21 KNI-51-P 380 aragonite 1809 -6.75 KNI-51-P 385 aragonite 1806 -6.18 KNI-51-P 390 aragonite 1802 -6.69 KNI-51-P 395 aragonite 1799 -6.24 KNI-51-P 400 aragonite 1796 -6.81 KNI-51-P 405 aragonite 1793 -6.52 KNI-51-P 410 aragonite 1790 -6.42 KNI-51-P 415 aragonite 1786 -6.01 KNI-51-P 420 aragonite 1783 -6.52 KNI-51-P 425 aragonite 1780 -5.66 KNI-51-P 430 aragonite 1777 -7.04 KNI-51-P 435 aragonite 1773 -6.53 KNI-51-P 440 aragonite 1770 -6.88 KNI-51-P 445 aragonite 1767 -6.24 KNI-51-P 450 aragonite 1764 -7.32 KNI-51-P 455 aragonite 1760 -6.56 KNI-51-P 460 aragonite 1757 -6.86 KNI-51-P 465 aragonite 1754 -6.35 KNI-51-P 470 aragonite 1751 -6.85 KNI-51-P 475 aragonite 1748 -6.85 KNI-51-P 480 aragonite 1744 -6.85 KNI-51-P 485 aragonite 1741 -5.74 KNI-51-P 490 aragonite 1738 -6.57 KNI-51-P 495 aragonite 1735 -6.45 KNI-51-P 497 aragonite 1733 -6.41