# Midwestern USA 65 Year Tree Ring d13C and Water Use Efficiency Data #----------------------------------------------------------------------- # World Data Service for Paleoclimatology, Boulder # and # NOAA Paleoclimatology Program # National Centers for Environmental Information (NCEI) #----------------------------------------------------------------------- # Template Version 3.0 # Encoding: UTF-8 # NOTE: Please cite Publication, and Online_Resource and date accessed when using these data. # If there is no publication information, please cite Investigators, Title, and Online_Resource and date accessed. # # Online_Resource: https://www.ncdc.noaa.gov/paleo/study/30534 # Description: NOAA Landing Page # Online_Resource: https://www.ncei.noaa.gov/pub/data/paleo/treering/isotope/northamerica/usa/maxwell2019/morgan-monroe2019d13c.txt # Description: NOAA location of the template # # Original_Source_URL: # Description: # # Description/Documentation lines begin with # # Data lines have no # # # Data Type: Tree Ring # # Dataset DOI: # # Parameter_Keywords: carbon isotopes #-------------------- # Contribution_Date # Date: 2020-07-01 #-------------------- # File_Last_Modified_Date # Date: 2020-07-01 #-------------------- # Title # Study_Name: Midwestern USA 65 Year Tree Ring d13C and Water Use Efficiency Data #-------------------- # Investigators # Investigators: Maxwell, J.T.; Harley, G.L.; Mandra, T.E.; Yi, K.; Kannenberg, S.A.; Au, T.F.; Robeson, S.M.; Pederson, N.; Sauer, P.E.; Novick, K.A. #-------------------- # Description_Notes_and_Keywords # Description: Hardwood tree ring carbon isotope (d13C) data from 3 midwestern USA locations, plus Intrinsic Water-Use Efficiency data. # Tree ring width data from this study are archived in the International Tree Ring Data Bank, Site Codes MO079, MO080, IN024, IN025, IN026, MI026, MI027, MI028. # Provided Keywords: Eastern Deciduous Forest, Climate response, SO4, N, CO2, Climatic Water Balance #-------------------- # Publication # Authors: Justin T. Maxwell, Grant L. Harley, Tessa E. Mandra, Koong Yi, Steven A. Kannenberg, Tsun Fung Au, Scott M. Robeson, Neil Pederson, Peter E. Sauer, Kimberly A. Novick # Published_Date_or_Year: 2019-12-01 # Published_Title: Higher CO2 Concentrations and Lower Acidic Deposition Have Not Changed Drought Response in Tree Growth But Do Influence iWUE in Hardwood Trees in the Midwestern United States # Journal_Name: Journal of Geophysical Research: Biogeosciences # Volume: 124 # Edition: # Issue: 12 # Pages: 3798-3813 # Report_Number: # DOI: 10.1029/2019JG005298 # Online_Resource: https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019JG005298 # Full_Citation: # Abstract: Several important environmental influences of tree growth and carbon sequestration have changed over the past several decades in eastern North America, specifically, more frequent pluvial conditions, increased carbon dioxide (CO2) concentrations, and decreased acidic deposition. These factors could lead to changes in the relationship between tree growth and water availability, and perhaps even decouple the two, having large implications on how future climate change will impact forest productivity and carbon sequestration. Here, we examine the concurrent influence of the climatic water balance (precipitation minus potential evapotranspiration), CO2 concentrations, and sulfate and nitrogen deposition on radial tree growth, carbon isotopes, and intrinsic water-use efficiency (iWUE) for several hardwood tree species in the Midwestern United States. We found that when considering the simultaneous influence of these factors, the climatic water balance is the dominant influence on annual growth. Therefore, the recent pluvial period is the primary cause of the weakening relationship between radial growth and water availability. Even during pluvial periods, water availability is the primary control on growth, with increasing CO2 concentrations and decreased SO4 deposition being secondary factors. Importantly, the weakening in the climate-growth relationship is species specific, with Acer species having stable relationships with the climatic water balance, Liriodendron tulipifera showing a strengthening relationship, and Quercus species and Populus grandidentata exhibiting weakening. Thus, interannual variations in soil moisture unevenly impact tree growth and carbon sequestration. Our findings suggest that, despite recent pluvial conditions, increasing CO2 concentrations and decreasing acidic deposition have not buffered the impact of water availability on tree growth and carbon sequestration. #------------------ # Funding_Agency # Funding_Agency_Name: US Department of Agriculture # Grant: Agriculture and Food Research Initiative Grant 2017-67013-26191 #------------------ # Site_Information # Site_Name: Morgan Monroe Flux Tower Site # Location: North America>United States Of America>Indiana # Country: United States Of America # Northernmost_Latitude: 39.3232 # Southernmost_Latitude: 39.3232 # Easternmost_Longitude: -86.4131 # Westernmost_Longitude: -86.4131 # Elevation: 287 #------------------ # Data_Collection # Collection_Name: Morgan-Monroe2019d13C # Earliest_Year: 1970 # Most_Recent_Year: 2012 # Time_Unit: Year CE # Core_Length: # Notes: #------------------ # Species # Species_Name: Quercus alba L. # Common_Name: White Oak # Tree_Species_Code: QUAL #------------------ # Species # Species_Name: Acer saccharum Marshall # Common_Name: Sugar Maple # Tree_Species_Code: ACSH #------------------ # Species # Species_Name: Liriodendron tulipifera L # Common_Name: Tuliptree # Tree_Species_Code: LITU #------------------ # Chronology_Information # Chronology: # #---------------- # Variables # # Data variables follow are preceded by "##" in columns one and two. # Data line variables format: one per line, shortname-tab-variable components (what, material, error, units, seasonality, data type,detail, method, C or N for Character or Numeric data, free text) # ## age age,,,year Common Era,,tree ring; climate reconstructions,,,N, ## species notes,,,tree ring,,,,,C, species QUAL=Quercus alba L.; ACSA=Acer saccharum Marshall; LITU=Liriodendron tulipifera L ## Dd13C delta 13C,alpha cellulose,,per mil VPDB,,tree ring,,isotope ratio mass spectrometry,N, difference between the d13C of the air and d13C in tree ring ## iWUE intrinsic water use efficiency,,,micromole per mole,,tree ring; climate reconstructions,,,N, # #---------------- # Data: # Data lines follow (have no #) # Data line format - tab-delimited text, variable short name as header # Missing Values: # age species Dd13C iWUE 1970 QUAL 19.27995135 67.78412682 1971 QUAL 18.6083115 70.00477459 1972 QUAL 18.76510206 74.84594882 1973 QUAL 18.90264931 78.00798521 1974 QUAL 17.32795022 87.7685951 1975 QUAL 11.21276023 86.72038414 1976 QUAL 17.51019013 90.58250485 1977 QUAL 18.3523527 87.49551247 1978 QUAL 17.97097535 89.46154547 1979 QUAL 18.98192934 80.29098089 1980 QUAL 18.87074919 85.34416371 1981 QUAL 18.77437137 82.14499134 1982 QUAL 19.13411997 86.00231378 1983 QUAL 19.01099791 73.95213835 1984 QUAL 19.0616104 77.7069665 1985 QUAL 18.71695507 88.91517106 1986 QUAL 20.1018131 78.51103195 1987 QUAL 19.3192716 82.10789842 1988 QUAL 18.43304148 85.28766888 1989 QUAL 19.58088418 84.47261583 1990 QUAL 19.32406675 84.99858239 1991 QUAL 19.71073976 72.58691717 1992 QUAL 18.94607188 80.39277953 1993 QUAL 19.14291642 86.49126438 1994 QUAL 19.43446863 78.29755709 1995 QUAL 19.35679329 85.16911559 1996 QUAL 19.61411732 76.19500541 1997 QUAL 20.41878567 69.35858308 1998 QUAL 19.17702299 89.96983217 1999 QUAL 19.35783735 78.92464996 2000 QUAL 19.12702648 69.12084158 2001 QUAL 18.81845422 88.53961712 2002 QUAL 19.18830119 72.27604734 2003 QUAL 18.09540981 98.74165322 2004 QUAL 19.53528335 67.85872879 2005 QUAL 17.8399056 94.8250311 2006 QUAL 19.49089023 70.23163382 2007 QUAL 19.02680714 87.52920104 2008 QUAL 18.98562432 86.33426031 2009 QUAL 19.27353022 83.37182573 2010 QUAL 18.71292098 86.10122988 2011 QUAL 19.32026406 86.83194643 2012 QUAL 19.24341891 79.89116076 1970 LITU 18.7997554 70.59557918 1971 LITU 18.72024538 71.39456553 1972 LITU 18.58484905 72.65514727 1973 LITU 18.44210734 73.98222471 1974 LITU 18.45339576 74.02645046 1975 LITU 18.08132912 77.37242961 1976 LITU 17.8471765 79.55565335 1977 LITU 18.15025428 77.04369335 1978 LITU 18.51328731 74.00995518 1979 LITU 18.79784688 71.71893729 1980 LITU 18.84691589 71.49055248 1981 LITU 18.51689502 74.53918547 1982 LITU 18.32424937 76.39986932 1983 LITU 11.83612523 76.40359736 1984 LITU 17.67957208 82.39144867 1985 LITU 18.31346492 76.92724358 1986 LITU 18.6454491 74.30143869 1987 LITU 18.48159636 75.92828201 1988 LITU 15.96704989 98.5642755 1989 LITU 18.85239987 73.05576297 1990 LITU 18.26175404 78.66837912 1991 LITU 17.22280908 88.25969746 1992 LITU 18.37118833 78.1389486 1993 LITU 18.51971009 77.25834912 1994 LITU 16.97091114 91.58477411 1995 LITU 17.90217921 83.36985336 1996 LITU 17.6550326 85.77935782 1997 LITU 18.06500919 82.46334299 1998 LITU 17.8832322 84.56709779 1999 LITU 17.01824769 93.0544442 2000 LITU 18.63162616 78.4072195 2001 LITU 17.92016385 85.37205453 2002 LITU 16.6948982 97.11190515 2003 LITU 17.3553118 91.33381031 2004 LITU 17.3795507 91.51665235 2005 LITU 17.31186582 92.5570474 2006 LITU 17.79797493 88.27429358 2007 LITU 17.23462841 94.14563582 2008 LITU 17.30804273 94.11598107 2009 LITU 17.8380676 89.38711643 2010 LITU 17.12843265 96.62997732 2011 LITU 16.80568269 100.1642422 2012 LITU 16.23050889 106.0240913 1970 ACSA 19.15137342 67.56851367 1971 ACSA 18.81735605 70.55720087 1972 ACSA 19.12526329 67.98929208 1973 ACSA 18.7826195 71.03852726 1974 ACSA 16.58427689 90.21583182 1975 ACSA 17.46914241 82.68335248 1976 ACSA 16.93172986 87.51264674 1977 ACSA 10.43691613 92.02657831 1978 ACSA 16.96391543 87.5215406 1979 ACSA 17.31650392 84.67167561 1980 ACSA 17.3615372 84.51513829 1981 ACSA 17.07893704 87.17420722 1982 ACSA 17.28028672 85.59314988 1983 ACSA 16.7012128 90.87768309 1984 ACSA 17.0187713 88.23284718 1985 ACSA 17.00888915 88.48045986 1986 ACSA 17.56716734 83.89116857 1987 ACSA 17.97273433 80.46399334 1988 ACSA 16.92258361 90.02789245 1989 ACSA 17.69196134 83.46087871 1990 ACSA 17.96569792 81.33370297 1991 ACSA 18.54633204 76.31212103 1992 ACSA 17.64241304 84.73843616 1993 ACSA 17.68998608 84.81741942 1994 ACSA 17.90893112 83.01885657 1995 ACSA 18.64123179 76.5973848 1996 ACSA 18.59415388 77.15897246 1997 ACSA 18.66096851 76.96308021 1998 ACSA 17.97841107 83.68421898 1999 ACSA 16.79541365 95.13180472 2000 ACSA 16.03685672 102.7188314 2001 ACSA 16.87585444 95.19104675 2002 ACSA 16.97538206 94.4687171 2003 ACSA 16.31392382 101.1956047 2004 ACSA 10.9842318 91.55383096 2005 ACSA 16.88074245 96.6758494 2006 ACSA 16.45144844 101.191415 2007 ACSA 16.64912768 99.79030972 2008 ACSA 17.33306756 93.87297175 2009 ACSA 17.28086413 94.82339445 2010 ACSA 17.21073454 95.82434742 2011 ACSA 16.29251916 105.2063293 2012 ACSA 15.83820485 109.8862682