

Report on Precipitation Data Construction Activities at NOAA/CPC

Pingping Xie

Climate Prediction Center National Oceanic and Atmospheric Administration

> Tel: (301)763-8000,#7572 E-Mail: Pingping.Xie@noaa.gov

Outline

- Project Overview
- Production / Development Details
 - GPI IR-based precipitation estimates
 - Gauge-based analyses
 - CMAP monthly / pentad precipitation analyses
 - ➤ GPCP pentad precipitation analysis
 - Global full-resolution IR data set
 - CMORPH hi-resolution precipitation analysis
- Status and Schedule
- Issues
- Resources

Overview [1]

Goal

 To construct precipitation and associated data sets for the Global Precipitation Climatology Project (GPCP) and other research, operations, and services applications

Source Data

- Gauge station reports
- Satellite observed IR data
- Precipitation estimates retrieved from satellite PMW
- (optional) NCEP reanalysis precipitation fields

Overview [2]

Deliverables

- Full-Resolution Global TBB Data
- Satellite IR-based global precip. estimates (GPI)
- Gauge-based monthly / daily precipitation analyses
- CMAP monthly / pentad global precipitation analyses
- GPCP pentad global precipitation analyses
- CMORPH hi-res integrated satellite precip. Estimates
- Current/expected user communities
 - GPCP Merging Center (Satellite TBB, GPI, gauge data)
 - Climate / weather / hydrology research communities
 - Operations (climate monitoring, assessments..)
 - Decision-making supports, applications in disaster mitigation, health sciences...

Satellite IR- Based Precip. Estimates (GPI)

- Approach
 - Collect TBB histograms data from geostationary satellites
 - Define precipitation estimates from the fractional coverage of cold clouds (235K)
- **Results and Accomplishments**
 - Quasi real-time updates of the TBB histograms and GPI for use by the GPCP merging center in creating monthly **GPCP** analysis

5

6

3

6

4

- **Product Maturity**
 - Sensor Use 5
 - Algorithm Stability
 - Meta Data
 - Documentation
 - Validation
 - Public Release
 - Science & Applications

4 (operational but manual)

Gauge- Based Analyses of Global Land Precipitation

- Approach
 - Collect monthly/daily precip. reports from CPC/CMAS, GTS and other sources
 - Define analyzed fields through interpolation
- Results and Accomplishments
 - Updated real-time from 1979
 - Used in creating GPCP and CMAP merged analyses

Product Maturity	Monthly	Daily
 Sensor Use 	4	4
 Algorithm Stability 	5	5
 Meta Data 	1	1
 Documentation 	6	6
 Validation 	2	2
 Public Release 	6	6
 Science & Applications 	4	4

CMAP Monthly / Pentad Global Merged Precipitation Analyses

- Approach
 - Define precipitation analyses with improved quality by merging gauge observations, satellite estimates and precipitation fields generated by reanalysis
- Results and Accomplishments
 - Global monthly / pentad precip. analyses from1979 ~
 - Undertainties in oceanic precip analyses examined
 - Used widely in research, operations and services (~2000 citations)
- Product Maturity
 - Sensor Use 4 5 Algorithm Stability Meta Data 1 Documentation 6 Validation 4 Public Release 6 Science & Applications 4

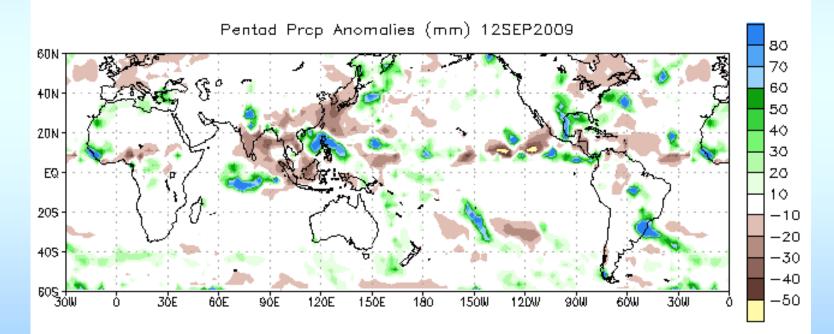
GPCP Pentad Global Merged Precipitation Analyses [1]

- Approach
 - Define precipitation analyses by adjusting the pentad CMAP against the monthly GPCP
- Results and Accomplishments
 - Global pentad precip. analysis from1979 ~
 - Real-time version available 2nd day after the end of pentad

5

6

4


6

4

- Part of the GPCP official products suite
- Product Maturity
 - Sensor Use
 4
 - Algorithm Stability
 - Meta Data
 1
 - Documentation
 - Validation
 - Public Release
 - Science & Applications

GPCP Pentad Global Merged Precipitation Analyses [2]

- Reprocessing pending (to be completed in a couple of months) to adjust the pentad analysis to GPCP monthly analysis V2.1
- Sample Real-Time Pentad GPCP for Climate Monitoring

Global Full- Resolution TBB Data [1]

Approach

Integrate raw TBB data from individual geostationary satellites into a global map of TBB through calibrations and corrections

Results and Accomplishments

- 30-min TBB maps on 4kmx4km grids over the globe (60°S-60°N) from 1998
- Provided to GPCP and others for the construction of hi-res merged satellite precip. analyses
- Routine operation on CPC/Compute Farm but still needs heavy manual interventions

5

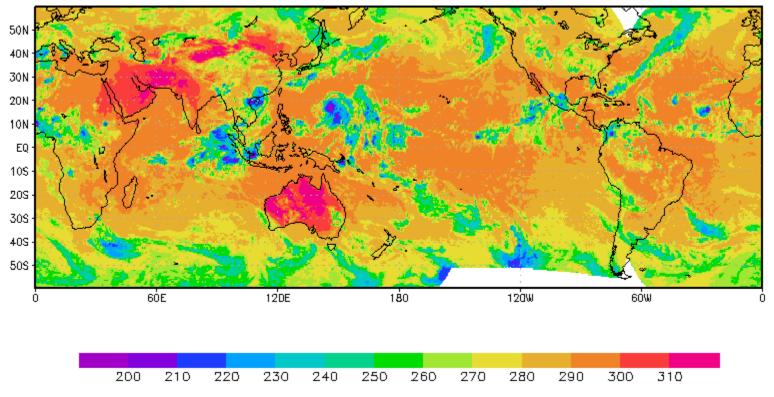
6

2

6

4

Product Maturity


- Sensor Use 4Algorithm Stability 5
- Meta Data
- Documentation
- Validation
- Public Release
- Science & Applications

Global Full- Resolution TBB Data [2]

Sample Global Hi-Res TBB Data

Global IR 200909150530Z

CMORPH Hi- Res Satellite Precip. Estimates[1]

Approach

- Compute advection vectors for the cloud / precipitation systems from consecutive IR images from geostationary satellites
- Propagate the instantaneous precipitation maps from satellite PMW observations to the targeted analysis time

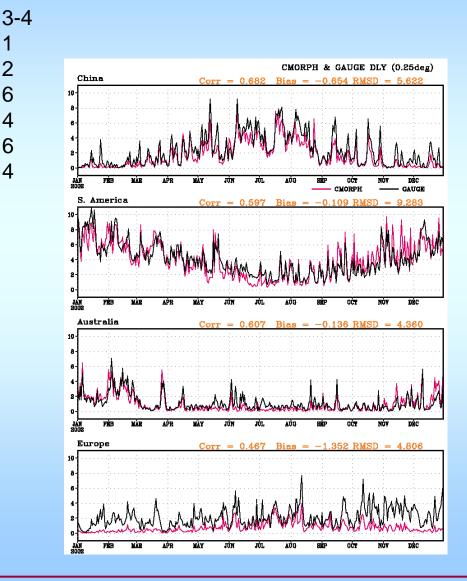
Results and Accomplishments

- This work is supported partially by the ARC project
- High-quality maps of 30-min precip generated real-time on an 8kmx8km grid over the globe (60°S-60°N) from Dec. 2002;
- Retrospective processing for 1998 ~ present will be complete in a couple of months
- Processing system migrated to CPC/CF but manual intervention required
- Stands out as **THE BEST product** of hi-res global precip.
- Strong candidate for the Version 3 GPCP products
- Further developments underway for a Kalman Filter based CMORPH with bias correction using daily gauge analysis

CMORPH Hi- Res Satellite Precip. Estimates [2]

1 2

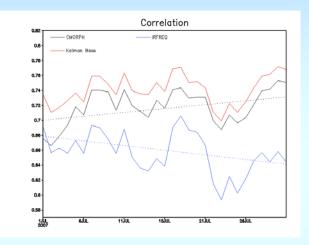
6

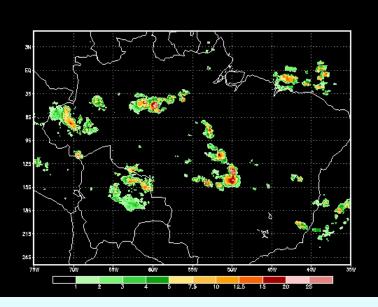

4

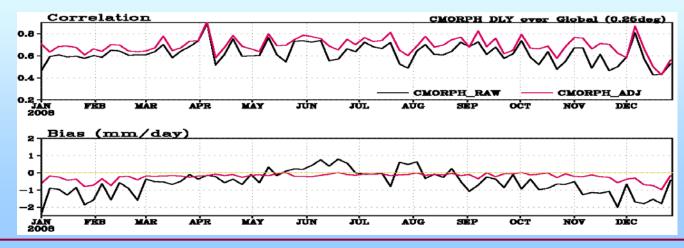
6

4

Product Maturity


- Sensor Use
- Algorithm Stability
- Meta Data
- Documentation
- Validation
- **Public Release**
- Science & Applications
- Reprocessing CMORPH for 1998 – present




CMORPH Hi- Res Satellite Precip. Estimates [3]

- CMORPH Improvements
 - Kalman Filter based CMORPH over South America

Gauge-adjusted CMORPH over global land

Status and Schedule

- GPI IR-Based Precipitation Estimates / monthly gauge analysis
 - Manual Operations at NOAA/CPC
 N/A for transition to automatic processing
- Monthly / Daily gauge analysis
 - monthly analysis updated manually
 - daily analysis migrated to CPC Compute Farm (CF)
- Monthly / Pentad CMAP
 - Real-time version migrated to CPC/CF
 - Standard version processed manually (for QC et al)
- Pentad GPCP
 - Real-time version being migrated to CPC/CF
 - Standard version processed manually
 - Full-Resolution Global IR
 - Migrated to CPC/CF
 - Requires routine manual intervention
- CMORPH Hi-Resolution Precipitation Estimates
 - Current version algorithm migrated to CPC/CF
 - Requires routine manual intervention
 - Next generation algorithm under developments

Issues

- Transition to CPC Compute Farm
 - Manual intervention needed even after the transition to CPC/CF
- Routine Updates of Operational Data Sets
 - Several data sets requires routine manual updates due to the limitation of input data sets et al
- Reprocessing of Operational Data Sets
 - Reprocessing is needed for some data sets (e.g. GPCP pentad analysis) due to project requirements and/or algorithm upgrades
- Improving Operational Data Sets
 - Data sets need to be improved as problems are detected and new techniques become available

Resources

Number of personnel employed for project

- 10% of a senior contractor working on hi-level technical problems
- 70% of a low level experienced contractor working on routine maintenance
- Key equipment or observatories used
 - CPC Compute Farm
 - CPC Severs / Work Stations with tape drivers
- Key collaborating projects or personnel
 - GPCP, Program Manager : R. Adler ESSIC/UMD
- NOAA points-of-contact
 - Pingping Xie; NOAA / CPC
- Target NOAA Data Center

NOAA Climate Prediction Center

Thank You Very Much for Supporting Us on This Project !!

