Operational SSTs at NCDC

Richard W. Reynolds Viva Banzon (PI 2B) Remote Sensing and Application Division NOAA/NESDIS/NCDC

> Richard.W.Reynolds@noaa.gov 828-217-4302

> > Viva.Banzon@noaa.gov 828-271-4453

SST Overview

- Produce accurate SST Analyses
 - Extended Reconstruction SSTs (ERSST) with associated surface land temperatures
 - ➤In situ only: 1854 to present
 - Optimum Interpolation (OI) Daily SSTs
 Satellite + in situ: 1981 to present
- Current/expected user communities
 - Climate monitoring and diagnostics
 - Weather including hurricane forecasting
 - Fisheries for SST gradients
 - Boundary condition for atmospheric models

Project Goals

- Provide historic SST monthly analyses from 1854 to present on a 2° spatial grid
- Merge SST and land surface temperatures to produce global surface temperatures from 1880 to present on a 5° spatial grid

Purpose: to monitor climate change

Current Status

- Improved tuning procedures which results in stronger anomalies prior to 1930
- Version 3b available without AVHRR satellite data
 - Residual Pathfinder AVHRR biases impact climate signal

Annual SST anomaly between 60°S and 60°N for analyses with and without bias-adjusted satellite data

Looking Forward: Correct ship biases

Daily OI Version 2

Project Goals

- Produce Daily OI on 1/4° spatial grid
- Include satellite bias correction with respect to in situ data
- Compute analysis for entire period with satellite data
- Make product useful for climate and weather

Daily OI Version 2

Current Status

- AVHRR-only: AVHRR + In Situ Data
 - September 1981 present
- AMSR+AVHRR: AMSR + AVHRR + In Situ Data
 > June 2002 present
- Real time: Interim (1 day of data)
- Delayed (2 weeks): Final (3 days of data)
- Ship SSTs corrected using buoy SSTs
- Satellite SSTs corrected using buoy SSTs and corrected ship SSTs

Daily OI SST Anomalies

Left: AVHRR-only OI Right: AVHRR+AMSR OI

- 27 August: Katrina
 - Weak anomaly in Gulf in AVHRR+AMSR
- 28 August: Katrina
 - Strong anomaly in AVHRR+AMSR
- 29 August: Katrina
 - Strong anomaly in AVHRR+AMSR
 - Modest anomaly in AVHRR-only

SST Analyses, 1 January 2007

- RSS OI

 (~1/11) grid

 NCEP RTG-HR

 (1/12) grid
- UK OSTIA

 (1/20) grid
- NCDC Daily OI: (AMSR + AVHRR)
 – (1/4) grid
- This is a daily average
 - What spatial scales are justified?

Daily OI Version 2

Looking Forward

- Add higher resolution daily OI with
 ~ 5 km spatial resolution
- For a first guess: Use the 1/4° daily AMSR+AVHRR OI from the current day + strongly damped high resolution analysis from the previous day
- June 2002 present

Analysis in Two Stages

Results/Accomplishments (for both SST analyses)

- Programs and scripts are run quasioperationally via cron jobs and are stable
 - We only have problems when data from outside NCDC is delayed or missing
 - Flow charts of the processing are done
- Scientific papers published for both
 - More in press
- Web pages established
 - Analyses available for download

Validation Strategy/Results (for both SST analyses)

- Intercomparisons carried out with other analyses
 - ERSST with HadISST, etc.
 - Daily OI with other GHRSST (Group for High Resolution SST) products
- Error estimates computed along with SST fields

Issues/Risks & Work- Off Plans (for both SST analyses)

- Analyses are only quasi-operational
 - Thus, if current programmer not available other programmers do not have complete access to produce analyses and archive them
 - Input data sets not all operational
 AMSR data from Remote Sensing Systems
 - Documentation not complete
- Product Maturity
 - Level 5 out of 6

Schedule Research- to- Operations

Documentation

- Complete documentation of codes, scripts, products, data formats, etc.
- Complete/modify Submission Agreement with archive
- Update product description on the NCDC
 CDR web pages

Schedule: Research- to- Operations

- Transfer of code from research to operations
 - Create a user guide
 - Rewrite code/scripts to adhere to operational requirements
 - Implement operational control of input data sets
 - Include additional diagnostic and flowcontrol code
 - Install code in production environment

Resources

- Number of personnel employed for project
 - 1.5 scientist
 - 1 programmer (need more)
- Key equipment
 - Linux/Unix computer with access to data servers
- Key collaborating projects or personnel
 - NOAA/NWS/CPC, NOAA/OAR, & NOAA/NESDIS/STAR
 - GHRSST (Group for High Resolution SST)
 - Oregon State Dudley Chelton
 - UK Met Office Nick Rayner
- Target NOAA Data Center
 - NCDC