
A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

Climate Data Record (CDR) Program

General Software Coding Standards

CDR Program Document Number: CDRP-STD-0007
Configuration Item Number: N/A
Revision 2 07/15/2014

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

2

REVISION HISTORY

Rev. Author DSR No. Description Date

1 Brian Newport,
Global Science and
Technology, Inc

DSR-004 Initial Delivery 06/29/2012

2
Draft

Brian Newport,
Global Science and
Technology, Inc

N/A CDRL 800-002 Reordered standards
according to the SQALE model prioritization.
Responded to accumulated changes tracked
since Rev.1 release. Responded to software
security requirement in GST SciTech II
contract. Submitted for Government
approval.

6/30/2014

2
Final

Brian Newport,
Global Science and
Technology, Inc

DSR-677 Baselined in CDRP Library 7/15/2014

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

3

TABLE of CONTENTS

1. INTRODUCTION .. 6
1.1 Purpose ... 6
1.2 Audience .. 6
1.3 Scope ... 6
1.4 Programming Language Neutrality .. 6
1.5 Prioritization .. 7

1.5.1 Standards, Guidelines, and Recommendations ... 7
1.5.2 The SQALE Model .. 7
1.5.3 Document Structure .. 8

1.6 References ... 8
1.6.1 Applicable Documents ... 8
1.6.2 Reference Documents ... 9

2. COMPUTING PLATFORM ... 10
2.1 Hardware ... 10
2.2 Operating Systems ... 10
2.3 Languages .. 10

3. STANDARDS ... 12
3.1 Testability .. 12

3.1.1 Unit Testability .. 12
3.1.2 Integration Testability ... 13

3.2 Reliability ... 16
3.2.1 Data Reliability ... 16
3.2.2 Logic Reliability .. 17
3.2.3 Resource Reliability ... 17

3.3 Changeability ... 17
3.3.1 Logic Changeability .. 17

3.4 Security .. 17
3.4.1 Statement Related Security ... 17
3.4.2 Operating System Related Security ... 18

3.5 Maintainability .. 18
3.5.1 Readability ... 18
3.5.2 Understandability .. 19

3.6 Portability .. 21
3.6.1 Operating System Portability ... 21
3.6.2 Compiler Portability ... 21
3.6.3 Language Portability .. 21

4. GUIDELINES ... 22
4.1 Testability .. 22

4.1.1 Unit Testability .. 22
4.1.2 Integration Testability ... 22

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

4

4.2 Reliability ... 24
4.2.1 Data Reliability ... 24
4.2.2 Logic Reliability .. 25
4.2.3 Statement Reliability ... 26
4.2.4 Resource Reliability ... 26
4.2.5 Architecture Reliability .. 27

4.3 Changeability ... 27
4.3.1 Data Changeability... 27
4.3.2 Logic Changeability .. 28
4.3.3 Architecture Changeability .. 29

4.4 Efficiency ... 29
4.4.1 CPU Efficiency .. 29

4.5 Security .. 30
4.5.1 Statement Related Security ... 30
4.5.2 User Related Security .. 30
4.5.3 Operating System Related Security ... 30

4.6 Maintainability .. 31
4.6.1 Readability ... 31
4.6.2 Understandability .. 33

4.7 Portability .. 36
4.7.1 Operating System Portability ... 36

5. RECOMMENDATIONS .. 37
5.1 Testability .. 37

5.1.1 Unit Testability .. 37
5.2 Reliability ... 38

5.2.1 Data Reliability ... 38
5.2.2 Logic Reliability .. 38

5.3 Maintainability .. 38
5.3.1 Readability ... 38
5.3.2 Understandability .. 39

5.4 Scientific Defensibility ... 39

APPENDIX A. ACRONYMS AND ABBREVIATIONS ... 40

APPENDIX B. GLOSSARY ... 41

APPENDIX C. FURTHER READING ... 43

APPENDIX D. MINIMUM STANDARDS FOR ROBODOC MARKUP .. 45

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

5

LIST of TABLES

Table 1: Acceptable languages for algorithms supplied to the CDR Program. ... 10

 LIST of FIGURES

Figure 1: SQALE model characteristics, reproduced from Letouzey (2012) .. 8

LIST of EXAMPLES

Example 1. Testing Exit Status on Unix-like Operating Systems .. 15

Example 2. Defining Integer Types with Specific Sizes in C .. 25

Example 3. Defining Floating Point Types with Specific Sizes in C .. 25

Example 4. Fortran Example of Memory Allocation With Test ... 26

Example 5. Suggested Include File Groupings .. 29

Example 6. Effective Commenting ... 35

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

6

1. Introduction

1.1 Purpose
The Climate Data Record (CDR) Program receives scientific algorithms in the form of
source code that will be deployed in a full-time operational setting for the purpose of
ongoing processing of new data, and for the purpose of reprocessing existing data. These
source codes are written in various programming languages and styles and often lack
coordinating documentation. The resulting software is often costly to maintain, since the
code may be difficult to read and understand; supporting documentation may be
inadequate; and the original developers may no longer be available to help maintain their
code.

The purpose of this document is to define coding standards that will streamline the
transition of CDR algorithms from research to Initial Operating Capability (IOC), and
subsequently to Full Operational Capability (FOC). Implementation of these standards is
evaluated as part of the Software Readiness dimension of the CDR Maturity Matrix (CDR-
MTX-008) in conjunction with the more detailed CDR Maturity Evaluation Guidelines (CDR-
GUID-0020), and will shift costs away from operations and maintenance as problems are
resolved earlier in the software development life cycle. Promoting the accountability of
scientists and software developers to create standardized software programs will benefit
both the CDR Program and the research teams in the long run.

1.2 Audience
The principal audience for this document includes any research or development team
providing software to the CDR Program. This includes Principal Investigators and other
algorithm developers developing code for IOC, and all scientists and software developers
involved in the transition of algorithms from IOC to FOC.

1.3 Scope
Coding standards are applicable to software development in any domain. The standards in
this document were selected based on their particular relevance to batch-oriented
scientific data analysis, and are not sufficient for other domains, such as Web applications.
Examples are mostly in Fortran, but have analogs in other languages.

This document focuses on the code as written and delivered, and does not address other
software engineering activities, such as the software development life cycle, project
management, configuration management, requirements, architecture, design, integration,
verification, validation, or quality assurance.

1.4 Programming Language Neutrality
This document strives to use terminology that is programming language-neutral despite
the variations that occur between different languages, and also takes into account the

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

7

variations in terminology that occur across the field of software engineering. The most
important definitions for this document are defined in the Glossary.

1.5 Prioritization
1.5.1 Standards, Guidelines, and Recommendations
The CDR Program recognizes that many stylistic suggestions are subjective, and therefore
should not have the same importance as techniques and practices that are known to
improve code quality at run time and its maintainability in the future. For this reason, these
standards are divided into three categories, which become progressively more important
as the level of maturity increases:

Standard: Compliance with this category is required to achieve CDR Maturity
Level 5 (FOC) and all subsequent levels of maturity, and strongly encouraged at
earlier levels of maturity. Non-compliances at FOC will need to be justified in
writing by the developer, and recorded as a waiver if approved by the CDR
Program.

Guideline: Compliance with this category is required for any new or modified
source code files produced during the transition to CDR Maturity Level 5 (FOC),
and is encouraged at earlier levels of maturity.

Recommendation: Compliance with this category is desirable at CDR Maturity
Level 5 (FOC) and all subsequent levels of maturity.

These three categories will be found in the above format throughout this document. If
possible, all standards, guidelines and recommendations should be followed, keeping in
mind their increasing importance at increasing levels of maturity.

1.5.2 The SQALE Model
The standards, guidelines, and recommendations in this document have been prioritized
according to the Software Quality Assessment based on Lifecycle Expectations (SQALE)
method of Letouzey (2012). The SQALE method is designed to measure the technical debt
associated with a software application, where technical debt is defined as the remediation
cost needed to bring the software up to the organizational standards needed for
operations. Version 1.0 of the SQALE model applies to existing code and is thus directly
applicable to the CDR Program, which has acquired code of largely unknown quality with a
view to eventually running that code at NCDC.

The SQALE quality model is derived from the quality model presented in ISO 9126 Software
Engineering – Product Quality, and uses the hierarchy of quality characteristics (attributes)
shown in Figure 1 below. In this hierarchy each level is built on the level below. Thus,
according to the SQALE model a maintainable product must also be testable, reliable,
changeable, efficient, and secure, in addition to having characteristics specific to
maintainability. The SQALE model also decomposes each characteristic into sub-
characteristics. For example, testability is decomposed to unit testability and integration

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

8

testability. By construction the SQALE model is orthogonal, i.e., standards relevant to more
than one characteristic are assigned to the lowest level in the hierarchy.

Figure 1: SQALE model characteristics, reproduced from Letouzey (2012)

1.5.3 Document Structure
In FY 2013 the SQALE model was applied to each standard, guideline, and recommendation
in Rev. 1 of this document, and the results captured in CDRP-MTX-0331 Rev 1 Prioritization
of CDR Coding Standards using SQALE. In Rev 2 this document has been restructured to
reflect this prioritization as follows. Sections 3, 4, and 5 contain Standards, Guidelines, and
Recommendations respectively. Within each of those sections there are Level 2 headings
for each of the SQALE model characteristics in turn, from Testability to Reusability. Level 3
headings correspond to the SQALE sub-characteristics in Figure 8.1 of Letouzey (2012). In
order to save space any Level 2 and Level 3 headings that have no content have been
omitted. With this structure, the document naturally flows from the highest priority items
to the lowest priority items.

1.6 References
1.6.1 Applicable Documents
The following documents are applicable to the development and preparation of this
document.

Document Title Reference

Climate Data Record (CDR) Maturity Matrix CDRP-MTX-0008 V4.0 (12/20/2011)

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

9

Document Title Reference

Climate Data Record (CDR) Maturity
Evaluation Guidelines

CDRP-GUID-0020 V2.0 (8/4/2011)

CDR Program CDR Names CDRP-STD-0261 Rev 4 (1/8/2014)

1.6.2 Reference Documents
This document is based in part on the following sources, as well as lessons learned as a
result of the CDR Program Office staff experience in moving scientific code to operations.
Additional sources are given in Appendix B.

Document Title Reference

Software Coding Guidelines Clouds and the Earth’s Radiant Energy System (CERES)
Data Management System (DMS), 2008.
http://science.larc.nasa.gov/ceres/SCG/SCG_V2.pdf
[CERES 2008]

The Power of 10: Rules for Developing Safety-
Critical Code

Holzmann, Gerard J., IEEE Computer, June 2006.
http://spinroot.com/gerard/pdf/Power_of_Ten.pdf
[Holzmann 2006]

Code Complete, 2nd Edition McConnell, Steve, Microsoft Press, 2004.

Guidelines for the Use of the C Language in
Critical Systems, 2nd Edition

Motor Industry Software Reliability Association,
MISRA-C:2004, 2nd Edition, 2008. [MISRA 2008]

Structured Testing: A Testing Methodology
Using the Cyclomatic Complexity Metric

Watson, Arthur H., and McCabe, Thomas J., NIST
Special Publication 500-235, August 1996. [NIST 1996]

Standards, Guidelines, and
Recommendations for Writing Fortran 77
Code, Version 2.0

NOAA Satellite Products and Services Review Board
(SPRSB), 2010, (Approval Pending).
http://projects.osd.noaa.gov/spsrb/standards_docs/ge
neral_standards_v2.0.docx [SPRSB 2010]

The SQALE Method: Definition Document Letouzey, Jean-Louis, January 27, 2012.
http://www.sqale.org/wp-
content/uploads/2010/08/SQALE-Method-EN-V1-0.pdf

Prioritization of CDR Coding Standards Using
SQALE

CDRP-MTX-0331 Rev 1 (4/11/2013)

COCOMO II Model Definition Manual Available at:
http://csse.usc.edu/csse/research/COCOMOII/cocomo
_downloads.htm

http://science.larc.nasa.gov/ceres/SCG/SCG_V2.pdf
http://spinroot.com/gerard/pdf/Power_of_Ten.pdf
http://projects.osd.noaa.gov/spsrb/standards_docs/general_standards_v2.0.docx
http://projects.osd.noaa.gov/spsrb/standards_docs/general_standards_v2.0.docx
http://www.sqale.org/wp-content/uploads/2010/08/SQALE-Method-EN-V1-0.pdf
http://www.sqale.org/wp-content/uploads/2010/08/SQALE-Method-EN-V1-0.pdf
http://csse.usc.edu/csse/research/COCOMOII/cocomo_downloads.htm
http://csse.usc.edu/csse/research/COCOMOII/cocomo_downloads.htm

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

10

2. Computing Platform

2.1 Hardware
It is expected that the CDR processing will be performed on 32-bit or 64-bit machines using
the IEEE Standard for Floating-Point Arithmetic (IEEE 754).

2.2 Operating Systems
It is expected that the CDR Program will use a Unix-like operating system to produce
Climate Data Records. However, the exact distribution and version is unknown and is likely
to vary. This document includes standards that address portability between different
environments.

2.3 Languages
Table 1 below defines the acceptable programming languages for algorithms supplied to
the CDR Program. For each language the table also shows the corresponding standard, and
a free compiler and compilation options that will be used to verify compliance with the
algorithm submission standards in subsequent sections of this document. For all languages
the code is expected to compile with the current stable release of the relevant compiler.
The CDR Program has made no assessment of the extent to which any of these compilers
complies with the relevant standard.

Table 1: Acceptable languages for algorithms supplied to the CDR Program.

Language Standard or Documentation Free Compiler
and Options

C ISO/IEC 9899:1990 (aka ANSI C; C90) gcc
-ansi –Wall

C++ ISO/IEC 14882:1998 as amended by ISO/IEC 14882:2003 gcc
-ansi –Wall

FORTRAN 77 X3J3 http://www.fortran.com/F77_std/rjcnf0001.html

gcc or gfortran
-Wall

Fortran 95 or
later

ISO/IEC 1539-1:2010, 1539-2:2000, 1539-3:1999 gcc or gfortran
-std=f95 –Wall

IDL http://www.ittvis.com/language/en-us/productsservices/idl.aspx N/A

Java Gosling et al., The Java Language Specification, Third edition, Sun
Microsystems (1996)

gcc
-Wall

Perl http://www.perl.org/ Perl
-w

http://www.fortran.com/F77_std/rjcnf0001.html
http://www.ittvis.com/language/en-us/productsservices/idl.aspx
http://www.perl.org/

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

11

Language Standard or Documentation Free Compiler
and Options

Python http://www.python.org/ Python 2.x
Python 3.x

Shell http://www.gnu.org/software/bash/manual/ bash

http://www.python.org/
http://www.gnu.org/software/bash/manual/

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

12

3. Standards

3.1 Testability
3.1.1 Unit Testability

Standard: Each submitted source file shall compile and link (or be interpreted)
with no errors when using the compiler or interpreter and options (if any) for
that language specified in CDRP-STD-0007 CDR Program General Software
Coding Standards, Table 1: Acceptable languages for algorithms supplied to the
CDR Program. [CDRP-STD-0007:004]
Rationale: Consistent with the CDR Program expectation that the submitted code is the actual
code that was used to produce the data product submitted for Initial Operational Capability (IOC)
and subsequent levels of maturity.

Standard: All variables shall be initialized to a known value before use. [CDRP-STD-
0007:060]
Rationale: Developers often assume that variables will be initialized by the compiler, operating
system, computer hardware, input file, or by operator action. Such assumptions can be incorrect,
particularly when the code is moved to a new platform or when other changes are made. The
resulting errors are often difficult to reproduce.

Standard: Individual bits and bytes in floating point numbers shall not be used
or modified. [CDRP-STD-0007:062]
Rationale: Portability and maintainability. The storage layout of floating point values may vary
from one compiler to another. In addition the floating-point implementation may not be fully
compliant with the IEEE Standard for floating point arithmetic (IEEE 754).

Standard: Source code lines shall not exceed 132 characters in length, including
any indentation, but not including the line termination character(s). [CDRP-STD-
0007:063]
Rationale: Some compilers will not accept lines longer than 132 characters.

Standard: The source code shall not contain any hardcoded absolute paths to
files or directories. [CDRP-STD-0007:100]
Rationale: Eliminates the need to modify and recompile the source code every time an I/O path
is changed, and thus supports moving the compiled software application from a development
environment to a test or production environment. I/O paths should be passed to the application
at run time via the command line or a configuration file. However, it is acceptable to hardcode
the relative paths within a directory tree that has a configurable root.

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

13

3.1.2 Integration Testability
Standard: Each source code package delivered to the CDR Program shall contain
the complete source code needed to build the software application
executable(s). [CDRP-STD-0007:003]
Rationale: Essential for the CDR to be reproduced successfully by a third party in the absence of
the original development team.

Standard: Each source code package delivered to the CDR Program shall contain
all of the scripts needed to run the complete application. [CDRP-STD-0007:120]
Rationale: Essential for the CDR to be reproduced successfully by a third party in the absence of
the original development team.

Standard: Each source code package delivered to the CDR Program shall contain
support for an automated build of the software application executable(s). [CDRP-
STD-0007:006]
Rationale: In most cases it is tedious and error prone to build a software application using
manual compilation and linking. This standard supports the automated build process that will be
needed during the transition from IOC to FOC, and could consist of a configure script plus a top
level script or make file driving a combination of make files, or other automation tools.

Standard: Each source code package delivered to the CDR Program shall contain
an ASCII README file at the same level as the directories containing source code.
[CDRP-STD-0007:007]
Rationale: Essential for the CDR Program Office staff and third parties to rapidly locate
information needed to reproduce the CDR in the absence of the original development team.

Standard: The README file shall contain complete instructions for building the
software application. [CDRP-STD-0007:008]
Rationale: Essential for the CDR to be reproduced successfully by a third party in the absence of
the original development team.

Standard: The README file shall identify all of the inputs required to run the
software application, and include instructions on how to obtain the sensor
inputs and any other inputs not included in the source code package. [CDRP-STD-
0007:121]
Rationale: Essential for the CDR to be reproduced successfully by a third party in the absence of
the original development team.

Standard: The README file shall contain instructions for performing a simple
test to confirm that the software application has been built correctly. [CDRP-STD-
0007:122]
Rationale: Essential for the CDR to be reproduced successfully by a third party in the absence of
the original development team.

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

14

Standard: The README file shall outline the steps needed to create the CDR
dataset using the software application, or provide a reference to a document
containing this information. [CDRP-STD-0007:123]
Note: This information may appear in the Climate Algorithm Theoretical Basis Document (C-
ATBD) for CDRs at IOC, and should appear in the Operational Algorithm Description (OAD) for
CDRs at FOC.

Rationale: Essential for the CDR to be reproduced successfully by a third party in the absence of
the original development team.

Standard: The delivery package shall be a gzipped tar archive, constructed such
that the command:
% tar –ztf <tarfile name>.tar.gz

yields (without considering the sort order):

<CDR Name>-v<major>r<minor>/
 README
 <build scripts/Makefile>
 <source directories>
 <script directories>
 <data directories>

where <CDR Name> is a recognizable and unique contraction of the Website
Name in the current revision of CDRP-STD-0261 CDR Program CDR Names, and
<major> and <minor> are the two-digit version and revision numbers specified
in the NCDC Submission Agreement. [CDRP-STD-0007:012]

Rationale: Ensures that the CDR source code packages have a consistent layout at the top level.

Standard: Source code packages delivered to the CDR Program shall not contain
any directories or files created by the version control system. [CDRP-STD-0007:015]
Rationale: Version control systems typically create directories and files in the developer’s
source area. For example, CVS creates a CVS directory, and Subversion creates a hidden .svn
directory. Such directories and files can cause problems when imported into the CDR Program
version control system, unnecessarily increase the size of the package, and provide information
not needed by the CDR Program. The code to be delivered should be extracted cleanly from the
version control system using the “export” command or its equivalent.

Standard: The software application shall not use any executable code created or
modified at run-time, including scripts. [CDRP-STD-0007:020]
Note: This does not preclude the use of an auto-coder that is executed as part of the build process,
i.e., at compile time.

Rationale: Self-modifying code is extremely difficult to debug, and adds unnecessary complexity
to error detection and exception handling.

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

15

Standard: The name of the source code file containing the software application
entry point shall be clearly identified by including the string “main” in the file
name. [CDRP-STD-0007:033]
Rationale: Rapid comprehension aids maintainability.

Standard: Application components that can be executed from the command line
shall provide online help that shows command line usage. [CDRP-STD-0007:048]
Rationale: Usability.

Standard: The exit status (return code) of every child process shall be examined
to determine whether an error occurred. [CDRP-STD-0007:107]
Rationale: If the child process is necessary then it must work correctly. Even the simplest and
most reliable child process will fail if its inputs are incorrect or other assumptions have been
violated.

Example 1. Testing Exit Status on Unix-like Operating Systems

The following examples demonstrate exit status tests but do not show how to
capture the child’s stderr stream.
/**/
/* C Example */
status = system(“cat /nothing”);
if (status != 0) {
 /* Error handling code here */
}
else {
 /* Continue with normal processing */
}

!***
! Fortran 90/95 example
character(len=256) :: command
integer :: status
command = ‘cat /nothing’
call system (command, status)
if (status.ne.0) then
 ! Error handling code here
else
 ! Continue with normal processing
endif

Perl example of error handling for system()
$status = system(“cat /nothing”);
if ($status != 0) {
 # Error handling code here
}
else {
 # Continue with normal processing here
}

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

16

Perl example of error handling for captured child output
$text = `ls –l`
if ($@ != 0) {
 # Error handling code here
}
else {
 # Continue with normal processing here
}

Python example of error handling for system()
import os
status = os.system(“ls –l”)
if status != 0:
 # Error handling code here
else:
 # Continue with normal processing here

Python example of error handling for captured child output
Note that popen() is deprecated in favor of the subprocess module
import os
f = os.popen(“ls –l”)
text = f.read()
status = f.close()
if status != 0:
 # Error handling code here
else:
 # Continue with normal processing here

Standard: The stdout and stderr streams shall not be merged. [CDRP-STD-0007:110]
Rationale: The stdout stream is buffered, while the stderr stream is not. If these streams are
merged then messages sent to stderr may be embedded at random places in the standard output,
and may not be correctly time-ordered relative to stdout.

3.2 Reliability

3.2.1 Data Reliability
Standard: Shift operations shall not be used to perform integer multiplication
and division. [CDRP-STD-0007:061]
Rationale: Portability and maintainability. Sign extension may not be performed or may be
performed differently on different platforms. Although languages such as IDL and Java provide a
uniform shift behavior, most other languages do not. It is difficult for a maintainer to remember
the behavior of different platforms when they have to work in several languages.

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

17

3.2.2 Logic Reliability
Standard: All loops shall have an exit condition that is certain to be reached, i.e.,
no infinite loops that are waiting for an external event such as operator input.
[CDRP-STD-0007:089]
Rationale: The CDR code will be run in a highly automated environment. Care must be taken to
ensure that there no inadvertent infinite loops. See also [Holzmann 2006], Rule 2.

3.2.3 Resource Reliability
Standard: The status of all file opens, reads, and writes shall be examined to
determine whether an error occurred. [CDRP-STD-0007:101]
Rationale: The software application output will almost always be incorrect if there is an I/O
error during processing.

3.3 Changeability

3.3.1 Logic Changeability
Standard: The source code file layout shall not contain any symbolic links (“soft
links”). [CDRP-STD-0007:011]
Rationale: Although symbolic links have important uses at the system level they must be
avoided in the source code area. Modern compilers offer features such as search paths that
eliminate the need for symbolic links to header files. Other source code needed in two different
places should be factored out as a shared file or library.

Standard: Loops shall be entered only at the top. [CDRP-STD-0007:088]
Rationale: As with GOTO, this creates “spaghetti” code that is difficult to modify.

3.4 Security

3.4.1 Statement Related Security
Standard: The software application shall not perform any data transfers to or
from remote sites. [CDRP-STD-0007:104]
Rationale: Security. The README file should contain sufficient information to obtain input files
not included with the source code. Avoids CWE-494.

Standard: The command “rm –rf” shall not be used anywhere in the software
application. [CDRP-STD-0007:105]
Rationale: It is all too easy to issue this command with an unintended path, or with a path that is
simply ‘/’, in which case this command will recursively delete every file owned by the user and
every directory to which the user has write permission.

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

18

Standard: The software application shall not contain any hardcoded credentials,
such as passwords or cryptographic keys. [CDRP-STD-0007:124]
Rationale: The source code will be placed on the CDR Website and made available to the general
public. Exposure of a password or other credential could allow an attack on NCDC or other
organization (CWE-798).

Standard: The software application shall not use the gets() or vfork() functions
available in C/C++, or their analogs in other languages. [CDRP-STD-0007:125]
Rationale: Use of these functions creates major security vulnerabilities (CWE-242). In addition
it unlikely that either would be needed for batch-oriented scientific data processing.

3.4.2 Operating System Related Security
Standard: Source code packages delivered to the CDR Program shall not contain
any compiled code such as object files and executables (binaries). [CDRP-STD-
0007:014]
Rationale: All code will be recompiled by the CDR Program to evaluate its completeness and
portability. In addition, compiled code cannot be evaluated for security compliance and will be
discarded. The separation of source code from compiled code can be accomplished by using the
“export” command in version control systems such as CVS and Subversion, or by implementing a
“make clean” rule in a Makefile.

3.5 Maintainability

3.5.1 Readability
Standard: The names of modules, source files, routines, variables, and other
software elements shall not exceed 31 characters in length; including any file
name extension (suffix). This standard does NOT apply to input and output files.
[CDRP-STD-0007:021]
Rationale: Some compilers permit longer names but only consider the first 31 characters when
comparing names. See also [MISRA 2008], Rule 5.1.

Standard: Comments shall not repeat information that is obvious in reading the
code. [CDRP-STD-0007:091]
Rationale: Unnecessary duplication and requires double maintenance if the code changes.

Standard: Comments shall have correct spelling. [CDRP-STD-0007:095]
Rationale: The code will be made available to the public. Spelling errors reflect badly on the CDR
Program and those who contribute to it.

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

19

Standard: Comments shall have correct grammar, either as full sentences in a
paragraph format, or as sentence fragments in a bullet format. [CDRP-STD-0007:096]
Rationale: The code will be made available to the public. Grammatical errors reflect badly on the
CDR Program and those who contribute to it.

3.5.2 Understandability
Standard: All performance optimizations that violate the other standards and
guidelines in this document shall be documented at the point where they are
being made, with comments that focus on (1) why the optimization is needed;
and (2) how it works. [CDRP-STD-0007:016]
Rationale: Prevents removal of the optimization as a result of code review or maintenance
activities.

Standard: The names of software elements shall correspond to the names
specified in any related documentation, including, but not limited to, the Climate
Algorithm Theoretical Basis Document (C-ATBD) and the Operational Algorithm
Description (OAD). [CDRP-STD-0007:022]
Rationale: Documentation is essential for maintainability and extensibility, but loses value if not
synchronized with the source code.

Standard: File name extensions (suffixes) for source code shall follow the
standards defined in compiler documentation. [CDRP-STD-0007:034]
Rationale: Nonstandard extensions often require workarounds, particularly in Make files.

Standard: Every file containing source code shall begin with a header comment
section. [CDRP-STD-0007:042]
Note: See CDRP-STD-0007:043 for contents of the header comment section.

Rationale: Creates a standardized location for this information.

Standard: Source code file header information shall be designated with the
following keywords or their synonyms: [CDRP-STD-0007:043]

a. NAME: The name of the source code file.

b. PURPOSE: One or two sentences describing the source code file function.

c. DESCRIPTION: A description of the processing performed within this source
code file. For published algorithms, provide a reference to the publication
(see references below) rather than duplicating that information here. Any
changes and high level implementation details should be noted. For
unpublished algorithms that are best represented by complex diagrams,
these diagrams should appear in the design documentation submitted with
the source code, and that documentation should be referenced below.

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

20

d. AUTHOR(S): A list of those who wrote the code in the file, and their
organization name. This list can be easily kept up to date if each person that
works on the code adds his or name.

e. COPYRIGHT: Insert the following statement exactly as written, except for the
initial comment character, which should be appropriate to the language.

! COPYRIGHT
! THIS SOFTWARE AND ITS DOCUMENTATION ARE CONSIDERED TO BE IN THE PUBLIC
! DOMAIN AND THUS ARE AVAILABLE FOR UNRESTRICTED PUBLIC USE. THEY ARE
! FURNISHED "AS IS." THE AUTHORS, THE UNITED STATES GOVERNMENT, ITS
! INSTRUMENTALITIES, OFFICERS, EMPLOYEES, AND AGENTS MAKE NO WARRANTY,
! EXPRESS OR IMPLIED, AS TO THE USEFULNESS OF THE SOFTWARE AND
! DOCUMENTATION FOR ANY PURPOSE. THEY ASSUME NO RESPONSIBILITY (1) FOR
! THE USE OF THE SOFTWARE AND DOCUMENTATION; OR (2) TO PROVIDE TECHNICAL
! SUPPORT TO USERS.
!

f. REVISION HISTORY: The revision history of the file in forward chronological
order, beginning with the initial version. This section should be appended
with a new entry each time that a revised version of the software is
submitted to the CDR Program and more often if appropriate. At a minimum
changes to algorithms, interfaces, and outputs should be documented. For
each such revision the new entry should provide version identification (at a
minimum the revision date), the developer’s initials, a brief summary of the
changes made, and the reason for the changes.
Note: It is not required to update the history every time that the file is checked into local
version control, although it is a best practice to always add a check-in comment in the version
control system being used. Such check-in comments can be used to update the header revision
history during preparation for delivery.

Standard: Comments shall be used to justify any violations of standards. [CDRP-
STD-0007:092]
Rationale: Protects a special case from being undone as a result of code review or maintenance.

Standard: Comments shall be used to document all data types, objects, and
exceptions unless their names are self-explanatory. [CDRP-STD-0007:093]
Rationale: Essential for understandability and overcomes limitations of self-documentation.

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

21

Standard: Comments shall be concise, complete, and unambiguous. [CDRP-STD-
0007:094]
Standard: Comments shall be used as needed to emphasize the structure of the
code. [CDRP-STD-0007:097]

3.6 Portability

3.6.1 Operating System Portability
Standard: File names for source code shall be constructed only from upper and
lower-case alphabetic characters, numeric characters, underscores, hyphens,
and periods. [CDRP-STD-0007:032]
Rationale: Simplifies code that parses file names (such as code counters), and supports
interoperability with spreadsheets and other tools.

Standard: Files in any source code directory shall have names that differ from
other files within that directory by more than alphabetic case. [CDRP-STD-0007:035]
Rationale: For example, myFile.f and MyFile.f appear to be the same file on some operating
systems. This type of name collision unnecessarily limits the choice of operating systems that can
be used for code development and maintenance.

3.6.2 Compiler Portability
Standard: Source code shall not use any language extensions beyond the
standards listed in CDRP-STD-0007 CDR Program General Software Coding
Standards, Table 1: Acceptable languages for algorithms supplied to the CDR
Program. [CDRP-STD-0007:002]
Rationale: Portability. Although some compilers may “add value” with various language
extensions, licensing and other issues may unnecessarily constrain the choice of operational
environments.

3.6.3 Language Portability
Standard: Each source file submitted to the CDR Program shall be coded in one
of the languages specified in CDRP-STD-0007 CDR Program General Software
Coding Standards, Table 1: Acceptable languages for algorithms supplied to the
CDR Program. [CDRP-STD-0007:001]
Rationale: Permits the use of free or proprietary compilers and restricts the choice of scripting
languages.

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

22

4. Guidelines

4.1 Testability

4.1.1 Unit Testability
Guideline: Functionality that exists in two or more modules, software units, or
source files should be evaluated for refactoring as a separate element. [CDRP-STD-
0007:018]

Rationale: Avoids the duplication of unit test cases and the duplication of code changes, should
they be needed.

Guideline: A routine should have a single point of entry. [CDRP-STD-0007:049]

Rationale: As with GOTO, multiple entries reduce cohesion and can lead to spaghetti code.

Guideline: The error reporting mechanism should report: (1) the name of the
routine where the error was detected; and (2) an intuitively clear statement of
the error that is both unambiguous and unencumbered by technical jargon.
[CDRP-STD-0007:118]

Rationale: Clarity in this area greatly assists testing and troubleshooting.

Guideline: In the case of a system error (including I/O errors) the error
reporting mechanism should also capture and report the system error message,
if the content of that message would aid comprehension. [CDRP-STD-0007:119]

Rationale: Additional clarity that assists testing and troubleshooting.

4.1.2 Integration Testability
Guideline: A consistent system of units should be used wherever possible
throughout the software application, and defined using comments that clearly
identify units and conversions in file headers, variable declarations, interface
specifications, design documentation, and user documentation. [CDRP-STD-0007:024]

Rationale: Errors resulting from inconsistent units can be easily missed and could easily result
in the incorrect determination of a measurement or trend.

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

23

Guideline: Date and time strings in file names, log files, and other human
readable outputs shall be rendered in a format compliant with the ISO Standard
“Data elements and interchange formats -- Information interchange --
Representation of dates and times” (ISO-8601), except as may be required by an
existing Interface Control Document (ICD) or similar specification. [CDRP-STD-
0007:031]

Rationale: Alphanumeric sorting of a list of strings containing ISO 8601 dates and times yields a
list that is time-ordered. Use of ISO 8601 removes the ambiguity between the American
month/day representation and the British day/month representation and eliminates the Y2K
problem. In addition, a consistent ordering of year, month, day, etc., will reduce the proliferation
of date-time conversion routines. Compliant formats include calendar dates as YYYY-MM-DD and
UTC dates and times as YYYY-MM-DDTHH:MM:SS.SSZ.

Guideline: Appropriate action should be taken in the event of an I/O error. [CDRP-
STD-0007:102]

Note: Most such errors should be treated as non-recoverable, but in some situations it may be
reasonable to repeat the operation or work around the failure.

Rationale: An incorrect result will almost always occur if there is an I/O error during
processing. However, a retry strategy may be appropriate for operations on slow networked
devices.

Guideline: Non-recoverable I/O errors should be treated in accordance with the
exception and error handling standards defined elsewhere in this document.
[CDRP-STD-0007:103]

Rationale: A systematic approach to error handling greatly aids the testing and debugging of
large scale processing systems.

Guideline: Appropriate action should be taken in the event of an error in a child
process. [CDRP-STD-0007:108]

Note: Most such errors should be treated as non-recoverable, but in some situations it may be
reasonable to repeat the operation or work around the failure.

Rationale: An incorrect result will almost always occur if an error occurs in a child process.

Guideline: Non-recoverable errors in child processes should be handled in
accordance with the error handling standards defined elsewhere in this
document. [CDRP-STD-0007:109]

Rationale: A systematic approach to error handling greatly aids the testing and debugging of
large scale processing systems.

Guideline: If the stdout stream is used as input to another program (e.g., via an
intermediate file or pipe) then all logging, warning, and error messages shall be
handled as specified by architecture and design documentation, or sent to stderr
if no such documentation exists. [CDRP-STD-0007:111]

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

24

Rationale: The corruption resulting from embedded stderr messages is particularly problematic
when the stdout stream is used as input by another process.

Guideline: Errors should be handled as close as possible to the point that they
are detected. [CDRP-STD-0007:112]

Rationale: Resources are wasted by continuing execution when an error condition exists.

Guideline: In the event of a “fatal” error condition being detected that would
prevent further processing, or which would render the output unusable, the
software application should: [CDRP-STD-0007:115]

a. Provide an appropriate error logging message; and

b. Terminate with a non-zero exit status.
Rationale: Compliance with this guideline allows a higher-level script or automation framework
to determine that an abnormal termination has occurred and take appropriate action. Otherwise,
processing may continue indefinitely, other unrelated processes may be affected, and a large
amount of troubleshooting and manual cleanup may be needed, all of which constitute a waste of
resources.

Guideline: Each routine calling another should check the error status
information returned to it before proceeding further, if such status is available
from the routine being called. [CDRP-STD-0007:117]

Rationale: If the routine is necessary then it must work correctly. Even the most reliable routine
will fail if its inputs are incorrect or other assumptions have been violated. See also [Holzmann
2006], Rule 7 and [MISRA 2008], Rule 16.10.

4.2 Reliability

4.2.1 Data Reliability
Guideline: Input parameters should not be modified within a routine, unless the
parameter is passed by value and is also not a pointer. [CDRP-STD-0007:051]

Rationale: Maintainability and portability. Input parameters should never be modified in
Fortran because some compilers pass all parameters by reference.

Guideline: All variables should be explicitly declared and typed, to the extent
that the language supports such declarations. [CDRP-STD-0007:054]

Rationale: Explicit declaration prevents a misspelled variable name being treated as a new
variable by the compiler/interpreter, and also allows complete freedom in choosing self-
documenting variable names. Can be achieved by using “IMPLICIT NONE” in Fortran, “use strict”
in Perl, and by using the compiler options specified in Table 1 to catch bad declarations.

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

25

Guideline: Variable sizes should be declared for those languages where the size
is not explicitly defined by the language standard. [CDRP-STD-0007:055]

Rationale: Portability. The size of numerical types is typically not well defined and may vary
from platform to platform.

Example 2. Defining Integer Types with Specific Sizes in C

The file stdint.h appears on many systems, including Linux, and may be used to
typedef integers of standard size in a portable way:
#include <stdint.h>

int8_t var1;
uint8_t var2;
uint16_t var3;
uint32_t var4;
/* And so on */

For more details see http://en.wikipedia.org/wiki/Stdint.h

Example 3. Defining Floating Point Types with Specific Sizes in C

The following example from [MISRA 2008] shows recommended type definitions
for floating point types on a machine with 32-bit floats. A similar list could be
made for 64-bit machines. These could be placed in a header file with conditional
compilation according to the machine type.
typedef float float32_t;
typedef double float64_t;
typedef long double float128_t;

These typedefs are then used in declarations, for example:
float64_t wavelength;

Guideline: A variable in an inner scope should not have the same name as a
variable in an outer scope, and therefore hide that variable. [CDRP-STD-0007:059]

Rationale: [MISRA 2008], Rule 5.2.

Guideline: Calculations involving integer types shall take explicit steps to avoid
overflow or wraparound. [CDRP-STD-0007:126]

Rationale: Unintended overflows or wraparounds cause incorrect results. In addition, they
create security vulnerabilities when the calculation is based on user input (CWE-190).

4.2.2 Logic Reliability
Guideline: Floating point variables should not be used to count the number of
iterations in a loop. [CDRP-STD-0007:090]

Rationale: Floating-point representations of integers are not always exact and thus the number
of iterations may differ from that expected.

http://en.wikipedia.org/wiki/Stdint.h

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

26

Guideline: The boolean type should be used for variables and expressions that
can only take the values true and false, for languages having a boolean type.
[CDRP-STD-0007:127]

Rationale: Use of integers for boolean expressions typically results in ambiguous code and
requires additional comments or other documentation to explain the values taken by the
integers. See also [McConnell 2004], Section 19.1.

4.2.3 Statement Reliability
Guideline: Each submitted source file should compile and link (or be
interpreted) with no warnings when using the compiler or interpreter and
options (if any) for that language specified in CDRP-STD-0007 CDR Program
General Software Coding Standards, Table 1: Acceptable languages for algorithms
supplied to the CDR Program. [CDRP-STD-0007:005]

Rationale: A compiler warning should be fixed even if the developer believes it is erroneous.
The developer may be confused and may later realize that warning was accurate. Fixing all
warnings also relieves the burden on subsequent maintainers. See [Holzmann 2006], Rule 10.

4.2.4 Resource Reliability
Guideline: Operating system interfaces (such as file I/O) should be isolated and
minimized. [CDRP-STD-0007:099]

Rationale: Supports maintainability and performance. For example, it may be difficult to
comprehend a software application where a file is opened at startup with a global identifier
(such as logical unit number, file descriptor, or stream) and then read or written to at odd times
by apparently unrelated routines. In addition, there is often a performance penalty associated
with performing many small I/O operations instead of a few large operations.

Guideline: The success of any dynamic memory allocation should be checked by
the code. [CDRP-STD-0007:057]

Rationale: Problems resulting from undetected failure of dynamic memory allocation can be
very difficult to troubleshoot.

Example 4. Fortran Example of Memory Allocation With Test
ALLOCATE(x(M,N), STAT = alloc_stat)
IF (STAT .eq. 0) THEN
 ! Success
ELSE
 ! Failure
ENDIF

Guideline: Every memory allocation should have a matching de-allocation. [CDRP-
STD-0007:128]

Rationale: Failure to de-allocate memory that is no longer needed results in increased
consumption of a finite resource as the software application proceeds. Although the

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

27

programming language runtime should perform memory management, this may vary with the
specific compiler used, and could be long delayed.

Guideline: The software design should consider the following items for any
buffer whose memory allocation is determined by user input: [CDRP-STD-0007:129]

a. The space needed for a termination marker.

b. The maximum size that should be allocated.

c. Additional space needed for the expansion of user data.

d. A user entry that would result in a negative buffer size.
Note: User input may occur in configuration files, control files, and via the command line. The
design needs to include an appropriate response should a check for these items result in an error
condition.

Rationale: Rationale: Inappropriately sized buffers can result in unintentional overwrite,
excessive use of memory, and other undefined behavior. In addition, failure to perform these
checks creates security vulnerabilities (CWE-131).

4.2.5 Architecture Reliability
Guideline: Each routine should implement exception and error handling
consistent with the overall approach defined in the architecture or design
documentation for the software application. [CDRP-STD-0007:113]

Rationale: A consistent approach to exception and error handling throughout the software
application is necessary for effective troubleshooting and debugging.

4.3 Changeability

4.3.1 Data Changeability
Guideline: Symbolic constants should be used in place of hardcoded literals for
all of the following cases: [CDRP-STD-0007:039]

a. Geophysical, geometric, and mathematical constants.

b. Fixed array dimensions, when these dimensions are used for more than one
array.

c. Dimensions and offsets associated with input or output data.

d. Constant loop limits, where these limits are used by more than one loop.
Rationale: Self-documenting code is easier to understand and maintain.

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

28

Guideline: Symbolic constants should be defined in a single location within the
software application source code. [CDRP-STD-0007:040]

Rationale: Prevents the possibility of having different values of a constant in different parts of
the software application. Also reduces the cost and risk of maintenance by eliminating the need
to search the entire source code in the event that a constant needs to be modified.

Guideline: Enumerated types or symbolic constants should be used for return
codes, quality flags, error flags, and any other type of flag. [CDRP-STD-0007:041]

Rationale: Self-documenting code.

Guideline: Variables should have the lowest scope consistent with their use.
[CDRP-STD-0007:058]

Note: This precludes most uses of global variables.

Rationale: “Scope” refers to the visibility of a variable within the software application. Variables
with global scope are visible everywhere and allow the coupling of otherwise unconnected parts
of the software application. Highly coupled software applications are more difficult to maintain,
extend, and reuse. Modern languages allow a variable’s scope to be restricted to the routine level.

4.3.2 Logic Changeability
Guideline: Routines should have a single exit point. [CDRP-STD-0007:053]

Rationale: Multiple exits inhibit rapid comprehension and reduce maintainability. Most routines
should return a value or an error code, and having multiple exits requires additional rework if
these should change.

Guideline: GOTO should not be used anywhere in the software application. [CDRP-
STD-0007:081]

Rationale: The use of GOTO encourages the rapid development of unstructured “spaghetti” code
that is impossible to maintain or extend. All of the languages permitted by this standard offer
control structures sufficiently rich that GOTO is never necessary. See also [Holzmann 2006], Rule
1.

Guideline: A control structure having only one statement in the body shall be
coded with the body statement placed on a new line at the next level of
indentation. [CDRP-STD-0007:082]

Rationale: Consistent with the indentation standards elsewhere in this document. Also
facilitates use of a debugger, which may not be able to distinguish the control logic from the body
when both are on the same line.

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

29

Guideline: A control structure having only one statement in the body should be
coded with block begin and end delimiters surrounding the body statement, for
all languages that provide such delimiters. [CDRP-STD-0007:083]

Note: In C, C++, Java, and Perl the block begin and end delimiters are ‘{‘, and ‘}’, in Fortran they are
“THEN” and “ENDIF”.

Rationale: Prevents the problem where additional correctly indented body statements are
added but the programmer neglects to add the block begin and end delimiters.

4.3.3 Architecture Changeability
Guideline: Include files should be organized hierarchically or in groups
according to scope and content. [CDRP-STD-0007:019]

Example 5. Suggested Include File Groupings

• Software application-wide parameters.

• Parameters specific to a single set of programs.

• Parameters specific to a single program or library.

• Symbolic error and function return values.

• Instrument/device parameters.

• Physical constants.

• Structure, union, and type definitions.

4.4 Efficiency

4.4.1 CPU Efficiency
Guideline: Exceptions should be used only to communicate abnormal or
unexpected conditions. [CDRP-STD-0007:114]

Rationale: Exception handling mechanisms are much slower than typical calls because of the
stack unwinding involved. Ideally, exceptions should occur vary rarely during normal operations.
Examples of exceptions that may be encountered in numerical data processing include divide by
0 errors, file permission errors, and array out of bounds errors, all of which can be avoided by
defensive programming.

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

30

4.5 Security

4.5.1 Statement Related Security
Guideline: Operations that read or copy user input to a buffer should restrict the
amount of data copied so as not to exceed the allocated buffer size.

Note: User input may occur in configuration files, control files, and via the command line.

Rationale: Reduces risk of a classic buffer overflow (CWE-120).

Guideline: The software application shall avoid use of any function that appears
in the Microsoft banned.h file, or their analogs in other languages.

Note: The banned.h file is available at http://www.microsoft.com/en-
us/download/details.aspx?id=24817

Rationale: Use of these functions creates security vulnerabilities, as described in CWE-676.

4.5.2 User Related Security
Guideline: Files created by the software application should have their
permissions set to 0644, i.e., '-rw-r--r--'. [CDRP-STD-0007:130]

Rationale: Reduces risk of inadvertent or deliberate deletion or overwrite by other users (CWE-
732).

Guideline: Directories created by the software application should have their
permissions set to 0755, i.e., 'drwxr-xr-x'. [CDRP-STD-131]

Rationale: Reduces risk of inadvertent or deliberate deletion by other users (CWE-732).

4.5.3 Operating System Related Security
Guideline: Directory and file paths input by the user should be searched for the
pattern '../', and all such occurrences removed before accessing the directory
or file. [CDRP-STD-132]

Note: User input may occur in configuration files, control files, and via the command line. Removal
of the pattern may have additional implications for the software design. See
http://en.wikipedia.org/wiki/Directory_traversal_attack for more details.

Rationale: Reduces risk of a directory traversal attack (CWE-22).

Guideline: Operating system commands that incorporate user-supplied inputs
should be executed without using the shell. [CDRP-STD-133]

Note: User input may occur in configuration files, control files, and via the command line. See
http://en.wikipedia.org/wiki/Code_injection#Shell_injection, and also the warning box at

http://www.microsoft.com/en-us/download/details.aspx?id=24817
http://www.microsoft.com/en-us/download/details.aspx?id=24817
http://en.wikipedia.org/wiki/Directory_traversal_attack
http://en.wikipedia.org/wiki/Code_injection#Shell_injection

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

31

https://docs.python.org/2.7/library/subprocess.html?highlight=injection#frequently-used-
arguments.

Rationale: Reduces risk of a command injection attack (CWE-78).

Guideline: The software application should not use printf-style format strings
that are controlled by user input. [CDRP-STD-134]

Note: User input may occur in configuration files, control files, and via the command line. This
weakness most often appears in code used to construct log messages.

Rationale: Reduces risk of information disclosure and execution of arbitrary code by an attacker
(CWE-134).

Guideline: The software application should not change its user or group id.
[CDRP-STD-135]

Note: The functions to be avoided include seteuid(), setuid(), setegid(), or setgid().

Rationale: Reduces risk of privilege escalation attack (CWE-250).

4.6 Maintainability

4.6.1 Readability
Guideline: Multi-word names of software elements should use camel case,
underscores, or hyphens to separate each word. [CDRP-STD-0007:025]

Rationale: Greatly includes readability of multi-word element names. Hyphenation can only be
used in file names.

Guideline: The use of capitalization, underscores, and hyphenation in software
element names should be consistent throughout the software application. [CDRP-
STD-0007:026]

Rationale: Uniformity supports rapid comprehension.

Guideline: The names of software elements should not be abbreviated to the
extent that the meaning is lost or they no longer resemble an English word. [CDRP-
STD-0007:027]

Note: Loop counters and array indices such as i, j, k may be appropriate, provided that their use
matches the formulas expressed in the algorithm documentation or common usage in mathematics.

Rationale: Longer English names are more easily understood and have a lower probability of
duplicating other names within the software application or operating system. For file names
there is no need to be limited to the 8.3 standard imposed by MS-DOS.

https://docs.python.org/2.7/library/subprocess.html?highlight=injection#frequently-used-arguments
https://docs.python.org/2.7/library/subprocess.html?highlight=injection#frequently-used-arguments

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

32

Guideline: Source code should be written with no more than one statement per
line. [CDRP-STD-0007:065]

Rationale: Putting multiple statements on one line inhibits readability. See [McConnell 2004]
pp.758-9 for a detailed discussion of this topic.

Guideline: Binary and ternary operators should be surrounded by spaces. [CDRP-
STD-0007:066]

Rationale: Enhances readability.

Guideline: At least one blank line should appear between the end of one routine
and the start of the next. [CDRP-STD-0007:068]

Rationale: Provides visual separation.

Guideline: Blank lines should be used to separate blocks of code. [CDRP-STD-
0007:070]

Rationale: Appropriate use of white space adds significantly to the readability of code.

Guideline: The body of each control structure should be indented by one level
relative to the line containing the control logic. [CDRP-STD-0007:072]

Note: Control structures include routines, if-else statements, loops, switch statements, and the case
labels under a switch statement.

Rationale: A good visual layout communicates the logical structure of the code.

Guideline: With the exception of make files, all source code files should use
spaces rather than tab characters for indentation. [CDRP-STD-0007:073]

Rationale: Tabs are not treated the same way by all editors. Thus tab-indented code created by
one developer may not be consistently indented when viewed by another developer. Editors
intended for programming can be configured to emit a specified number of spaces when the tab
key is pressed. However, “make” programs typically require the use of tab character for
indentation.

Guideline: Indents should be at least two spaces and no more than four spaces.
[CDRP-STD-0007:074]

Rationale: Studies have shown that indents of two to four spaces provide optimum readability.
See [McConnell 2004] Section 31.2.

Guideline: The indentation scheme should be consistent throughout the
software application [CDRP-STD-0007:075].

Guideline: Each new level of nesting should have an additional level of
indentation. [CDRP-STD-0007:076]

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

33

Guideline: The indentation scheme should visually distinguish control
structures from continuation lines from labels. [CDRP-STD-0007:077]

Guideline: Comments should be indented to conform to the indentation of the
code. [CDRP-STD-0007:079]

4.6.2 Understandability
Guideline: Source code file headers should contain markup for Robodoc as
described in Appendix D “Minimum Standards for Robodoc Markup”. [CDRP-STD-
0007:136]

Note: For more information about Robodoc see http://rfsber.home.xs4all.nl/Robo/

Rationale: The CDR Program uses Robodoc to extract header information for the purpose of
verifying CDRP-STD-0007:043.

Guideline: Unused variables, unused statements, unused routines, and unused
files should be removed prior to submission to the CDR Program. [CDRP-STD-
0007:010]

Rationale: Unused code increases the cost of maintenance by: increasing the amount of effort
needed for comprehension; giving false hits on searches, and creating a risk that unused code
will be out of synchronization if variable names or interfaces are changed elsewhere.

Guideline: The names of software elements should reflect the software
application domain. [CDRP-STD-0007:023]

Rationale: The code should be comprehensible to a scientist and reflect the documentation of
the algorithm in scientific papers and elsewhere.

Guideline: Acronyms and abbreviations should already be well accepted in the
software application domain. [CDRP-STD-0007:028]

Rationale: The use of new or unfamiliar acronyms and abbreviations obscures meaning, inhibits
rapid comprehension, and requires additional comments to define the acronyms and
abbreviations.

Guideline: File names for source code should reflect the functionality
implemented within. [CDRP-STD-0007:036]

Rationale: Rapid comprehension aids maintainability.

Guideline: Symbolic constants should be clearly identifiable as such. [CDRP-STD-
0007:037]

Rationale: Clearly separates constants from variables. Symbolic constants include those defined
with language dependent keywords such as #define, const, and PARAMETER, and also include
any variable used to hold a constant value.

http://rfsber.home.xs4all.nl/Robo/

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

34

Guideline: Symbolic constants should name the entity that the constant
represents, not the number. [CDRP-STD-0007:038]

Rationale: There is no value in having a constant named THREE that has the value 3, but it might
be appropriate to have a constant NDIM that refers to the number of spatial dimensions.

Guideline: Additional source code file header items listed below should be
included as appropriate, to the extent that this information is not obvious from
reading the code and its associated comments: [CDRP-STD-0007:044]

a. FILES: Input and output.

b. EXTERNALS: Routines and variables defined external to this source code file.

c. SUBROUTINES, FUNCTIONS, and/or PUBLIC METHODS: Any externally
visible subroutines, functions, and/or methods contained in this file.

d. REFERENCES: Reference(s) to any published documents and engineering
documents that this code is responding to, such as C-ATBD, OAD,
requirements document, design document, standards, and algorithm
changes.

e. USAGE: What the program is using (e.g., a calling sequence).
Note: For programs run from the command line it is preferable to put effort into run-time help
rather than documenting the command line in the file-header. Run-time help is more valuable
to the user and avoids the need to update this section of the header as the program evolves.

a. ERROR CODES/EXCEPTIONS: Description of the overall approach to error
reporting and exception handling in this source code file. Error codes should
be documented here if not adequately documented at the point they are
defined.

b. COMPILER NOTES: Description of any special compiler flags needed, or
limitations on which flags cannot be used, especially regarding the level of
compiler optimization.

c. NOTES: Any other information needed to increase understanding of this
source code file.

Guideline: All routines should be preceded by a consistently formatted comment
block that includes the following elements: [CDRP-STD-0007:047]

a. The name of the routine.

b. A brief description of the routine’s purpose.

c. A list of the inputs with a description of each, including the physical units
where applicable.

d. A list of the outputs with a description of each, including the physical units
where applicable.

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

35

e. Any additional notes that will aid an understanding of how this routine
works (optional).

Rationale: Understandability and reusability.

Guideline: Parameter lists should be ordered in the following sequence: input
parameters, parameters used for both input and output, output parameters.
[CDRP-STD-0007:050]

Rationale: Consistency aids comprehension.

Guideline: Related statements should be grouped in blocks. [CDRP-STD-0007:069]

Rationale: Similar to the use of paragraphs in English.

Guideline: Nesting should not exceed five levels. [CDRP-STD-0007:078]

Rationale: Comprehensibility is reduced when human short-term memory becomes
oversubscribed. In addition, deep nesting conflicts with self-documenting names, which tend to
be longer.

Guideline: An unconditional break statement should terminate every non-empty
case clause, i.e., no fall-through to the next label. [CDRP-STD-0007:086]

Rationale: [MISRA 2008], Rule 15.2. Inconsistent logic between successive case clauses makes
the code difficult to understand. If the same non-trivial code appears in two clauses it should be
factored out into a separate routine.

Guideline: Blocked comments should be used to highlight divisions between
different sections of the code. [CDRP-STD-0007:098]

Example 6. Effective Commenting

The following examples in Fortran and C show a block comment as well as a
concise comment that explains the next line.
! *****************************
! * Fortran
! * Process 16-bit float data
! *****************************
if (data_type .eq. DFNT_INT16) then
 ! *** Get the dimension scales into the array
 iflag = get_dim_scales(dim, size, rscale)
 ...

/***************************
* C
* Process 16-bit float data
****************************/
if (dataType == DFNT_INT16)
{
 /* Get the dimension scales into the array */

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

36

 iflag = GetDimScales(dim, size, rscale);
 ...

4.7 Portability

4.7.1 Operating System Portability
Guideline: Any code that is platform-specific should be refactored into a
separate routine for each target platform. [CDRP-STD-0007:017]

Rationale: Portability. Clearly isolates the platform-specific code and provides a well-defined
extension point for porting the code to a new platform.

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

37

5. Recommendations

5.1 Testability

5.1.1 Unit Testability
Recommendation: The McCabe Cyclomatic Complexity of any routine should be
no greater than 15. [CDRP-STD-0007:046]

Rationale: The cyclomatic complexity of a routine is the number of unit test cases needed to
execute all control paths within that routine. See [NIST 1996].

Recommendation: A routine should have no more than seven parameters. [CDRP-
STD-0007:052]

Rationale: Limitations of human working memory. Sustained comprehension aids
maintainability.

Recommendation: An if … else if … construct should be terminated with an else
clause. [CDRP-STD-0007:084]

Rationale: Defensive programming that ensures complete coverage of the conditions tested.
Analogous to the switch statement final clause standard below. [MISRA 2008], Rule 14.10. See
also the following recommendation.

Recommendation: The terminating else clause in an if … else if … else construct
should generate an error message, warning message or assertion if this clause
appears to be unreachable. [CDRP-STD-0007:085]

Rationale: Defensive programming to guard against errors in the control logic. Analogous to the
switch statement final clause standard below. [MISRA 2008], Rule 14.10.

Recommendation: The final clause of a switch statement should be the default
clause. [CDRP-STD-0007:087]

Rationale: Defensive programming. Ensures that the complete range of the switch condition is
covered. [MISRA 2008], Rule 15.3.

Recommendation: Each routine should be designed and implemented to detect
and report all foreseeable failures, including those that “should never happen”.
[CDRP-STD-0007:116]

Rationale: Comprehensive error detection is essential for robust data processing, testability,
and maintainability. In the long run it is cheaper to build this in at the start than to add it later.

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

38

5.2 Reliability
5.2.1 Data Reliability

Recommendation: Unions (in C and C++), EQUIVALENCE statements (Fortran),
and their equivalents in other languages should only be used when there is no
alternative. [CDRP-STD-0007:056]

Note: Examples of uses that may be permissible include system calls, device drivers, and when
required by a library interface.

Rationale: Using different identifiers for the same memory locations introduces coupling that
inhibits comprehension.

5.2.2 Logic Reliability
Recommendation: Avoid use of the system() function and its analogs at the
software application level. [CDRP-STD-0007:106]

Rationale: Modern languages and their associated libraries provide features that can substitute
for system() in many cases. Exception handling and error reporting from child processes is often
difficult to accomplish in a systematic and well-controlled manner, making testing and debugging
more difficult. If the number of spawned processes becomes large, it is possible to exceed the
total number allowed on the system.

5.3 Maintainability
5.3.1 Readability

Recommendation: The names of software elements should be long enough for
self-documentation and short enough that they do not obscure the visual
structure of the code. [CDRP-STD-0007:029]

Rationale: Readability. For most names the optimum length is between 8 and 16 characters. See
[McConnell 2004] page 262.

Recommendation: Avoid using variable and file names that differ only by
characters that look alike. [CDRP-STD-0007:030]

Rationale: Avoid confusion. Pairs of characters that appear similar in commonly used fixed
width fonts include 0 and O, 1 and l (lowercase L), 1 and I (uppercase i), 2 and Z, and 5 and S.

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

39

Recommendation: Routine lengths should not exceed 200 logical lines. [CDRP-STD-
0007:045]

Note: See the definition of “logical line” in the Glossary.

Rationale: Each routine should be easily understandable. It is much harder to understand a
routine that spans multiple pages. Excessively long routines are often a sign of poorly structured
code [Holzmann 2006, Rule 4]. See also Section 7.4 of [McConnell 2004].

Recommendation: Each variable or other declaration should be placed on its
own line. [CDRP-STD-0007:064]

Rationale: It is easier to find a variable visually or by “grep” when each declaration has a line of
its own. In addition this layout simplifies the removal of unused variables and the addition of
new variables, thus reducing the cost of maintenance and future refactoring. These benefits
outweigh the extra space.

Recommendation: Parentheses should be used to specify the order of
evaluation for any expression that has more than one type of operator. [CDRP-STD-
0007:067]

Rationale: Parentheses clarify intent regardless of the precedence rules defined for any specific
language.

Recommendation: The number of blank lines should be 8 to 16 percent of the
total lines. [CDRP-STD-0007:071]

Rationale: Studies have shown that the range 8 to 16 percent is optimal for effective debugging.
See [McConnell 2004] section 31.2

5.3.2 Understandability
Recommendation: For levels that span 12 lines or more, the terminating symbol
or keyword of each level in a nested control structure should contain an in-line
comment explaining which level is terminated. [CDRP-STD-0007:080]

5.4 Scientific Defensibility
Recommendation: It is recommended that the README file contain a citation
that can be copied and pasted, in the same format as this example [CDRP-STD-
0007:009]:

Hayes, B., B. Tesar, and K. Zuraw, 2003: OTSoft: Optimality Theory Software
(Version 2.1) [Software]. Available from
http://www.linguistics.ucla.edu/people/hayes/otsoft/

Rationale: Offers a third-party user of the CDR code a convenient and repeatable method for
referencing the code in any paper they may write.

http://www.linguistics.ucla.edu/people/hayes/otsoft/

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

40

Appendix A. Acronyms and Abbreviations

Acronym or
Abbreviation

Definition

ANSI American National Standards Institute

C-ATBD Climate Algorithm Theoretical Basis Document

CDR Climate Data Record

CPU Central Processing Unit

CWE Common Weakness Enumeration

FOC Full Operational Capability

IEEE Institute of Electrical and Electronic Engineers

ICD Interface Control Document

IOC Initial Operating Capability

MISRA Motor Industry Software Reliability Association

NCDC National Climatic Data Center

NOAA National Oceanic and Atmospheric Administration

OAD Operational Algorithm Description

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

41

Appendix B. Glossary

Term Definition

Big-endian A byte ordering of a multi-byte word in which the most significant byte is stored
in the lowest address of the memory space occupied by the word.

Binary Operator An operator having two operands. Examples include the arithmetic operations
“+”, “-“, “*”, and “/”.

Enumerated Type A data type consisting of a set of named values.

Exception A special condition that changes the normal flow of program execution. For
example, a division by zero.

Executable A file containing machine code that can be immediately loaded into memory and
run by the operating system.

Hardcoded A value defined in source code.

Library A module that implements functionality useful in a range of software
applications, is specifically designed to be reused without modification, and is
packaged and delivered separately from any specific application.

Little-endian A byte ordering of a multi-byte word in which the most significant byte is stored
in the highest address of the memory space occupied by the word.

Logical Line A source code statement (possibly wrapped over multiple physical lines)
consisting of executable code, a declaration, or a preprocessor directive. For cost
estimation purposes a more precise definition is needed. See the COCOMO II
Model Definition Manual, Table 64.

Maintainability The ease with which the software may be understood, modified, and tested, in
order to add or change functionality, improve performance, or correct defects.

Module An implementation unit of software that provides a coherent unit of
functionality [SEI 2011]. For the purposes of this document a module consists of
one or more source code files, i.e., individual routines are not considered to be
modules. Software applications are typically decomposed into several modules
during high-level design. Modules may be defined at different levels of
decomposition, i.e., a high-level module may be constructed from lower level
modules. The lowest level modules are often called “software units”. Coherence
implies that a module can be tested independently of the application, although
testing may require a test harness to substitute for the interfaces and data
normally provided by the remainder of the application.

Physical Line A non-blank, non-comment line of code. Each continuation line counts as an
additional physical line.

Platform A combination of specific hardware and a specific operating system.

Portability The ease with which the software may be modified to operate in an
environment different to that for which it was specifically designed. Complete
portability implies that no modification is needed.

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

42

Term Definition

Readability The ease with which the source code can be read and understood at the detailed
statement level.

Robustness The degree to which the software continues to operate in the presence of invalid
inputs or stressful environmental conditions.

Routine A sequence of executable statements with intervening comments and white
space that is invoked (“called”) from an executable statement, and which returns
control to the calling statement upon completion. Depending on the
programming language and type of routine, a routine may return data to the
caller or modify the input data provided by the caller. This generic definition
includes all “functions”, “subroutines”, “methods”, “program units”, and “main
programs” as they may be defined in various programming languages.

Scope The locations in a software application’s source code where a variable, routine,
or other named software element is accessible to the code at that location.

Source Code File Any file containing code that will be compiled or interpreted to machine-
readable instructions. This definition includes scripts and so-called “include” or
“header” files that are inserted into other files during compilation or
interpretation.

Software Unit The smallest element of a software application that is testable as an
independent entity. May consist of one or more source files. Often synonymous
with “module”.

Ternary Operator An operator having three operands. The most common is the “?” operator in C,
Java, and other languages.

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

43

Appendix C. Further Reading

In addition to the references in Section 1, the following sources were examined during
development of this document:

Defense System Software Development DOD-STD-2167A, Appendix B, Department of
Defense, 1988. Found at http://www.everyspec.com/DoD/DoD-
STD/download.php?spec=DOD-STD-2167A.008470.pdf

GNU Coding Standards, Free Software Foundation, 2011, Stallman, Richard, et al., 2011.
Found at http://www.gnu.org/prep/standards/

Google Python Style Guide. http://google-
styleguide.googlecode.com/svn/trunk/pyguide.html. Retrieved 6/16/2014.

JPL Institutional Coding Standard for the C Programming Language, JPL DOCID D-60411,
Version 1.0 (edited for external distribution). http://lars-
lab.jpl.nasa.gov/JPL_Coding_Standard_C.pdf. Retrieved 6/16/2014.

Kroah-Hartman, Greg, Documentation/Coding Style and beyond (presentation), 2002.
Found at
http://www.kroah.com/linux/talks/ols_2002_kernel_codingstyle_talk/html/index.html

Motor Industry Software Reliability Association, MISRA C++:2008, Guidelines for the use of
the C++ language in critical systems, 2008.

SDST-096 MODIS Science Software Delivery Guide, Rev.C, 2004. http://modis-
sdst.gsfc.nasa.gov/documents/SDST_096_RevC_Final_092804.doc

Software Architecture Glossary, Software Engineering Institute, Carnegie Mellon, 2011.
http://www.sei.cmu.edu/architecture/start/glossary/

General Programming Principles and Guidelines, Version 1.0, NOAA Satellite Products and
Services Review Board (SPRSB), 2009.
http://projects.osd.noaa.gov/spsrb/standards_docs/General_Prog_Standards_June200
9.pdf

Fortran77 Programming Standards, Version 1.0, NOAA Satellite Products and Services
Review Board (SPRSB), 2009, Kenneth A. Jensen.
http://projects.osd.noaa.gov/spsrb/standards_docs/Fortran77_Prog_Standards_and_G
uidelines.pdf

http://www.everyspec.com/DoD/DoD-STD/download.php?spec=DOD-STD-2167A.008470.pdf
http://www.everyspec.com/DoD/DoD-STD/download.php?spec=DOD-STD-2167A.008470.pdf
http://www.gnu.org/prep/standards/
http://google-styleguide.googlecode.com/svn/trunk/pyguide.html
http://google-styleguide.googlecode.com/svn/trunk/pyguide.html
http://lars-lab.jpl.nasa.gov/JPL_Coding_Standard_C.pdf
http://lars-lab.jpl.nasa.gov/JPL_Coding_Standard_C.pdf
http://www.kroah.com/linux/talks/ols_2002_kernel_codingstyle_talk/html/index.html
http://modis-sdst.gsfc.nasa.gov/documents/SDST_096_RevC_Final_092804.doc
http://modis-sdst.gsfc.nasa.gov/documents/SDST_096_RevC_Final_092804.doc
http://www.sei.cmu.edu/architecture/start/glossary/
http://projects.osd.noaa.gov/spsrb/standards_docs/General_Prog_Standards_June2009.pdf
http://projects.osd.noaa.gov/spsrb/standards_docs/General_Prog_Standards_June2009.pdf
http://projects.osd.noaa.gov/spsrb/standards_docs/Fortran77_Prog_Standards_and_Guidelines.pdf
http://projects.osd.noaa.gov/spsrb/standards_docs/Fortran77_Prog_Standards_and_Guidelines.pdf

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

44

Standards, Guidelines and Recommendations for Writing Fortran 95 Code, Version 1.0.
NOAA Satellite Products and Services Review Board (SPRSB), 2009, S.-A. Boukabara and
P. Van Delst.
http://projects.osd.noaa.gov/spsrb/standards_docs/Fortran95_standard_rev22Jun200
9.pdf

General Programming Principles and Guidelines, Version 2.0, NOAA Satellite Products and
Services Review Board (SPRSB), 2010, (Approval Pending).
http://projects.osd.noaa.gov/spsrb/standards_docs/general_standards_v2.0.docx

Standards, Guidelines and Recommendations for Writing Fortran 90/95 Code, Version 2.0,
NOAA Satellite Products and Services Review Board (SPRSB), 2010, (Approval
Pending), S.-A. Boukabara and P. Van Delst.
http://projects.osd.noaa.gov/spsrb/standards_docs/fortran95_v2.0.docx

Standards, Guidelines and Recommendations for Writing C Code, Version 1.0, NOAA
Satellite Products and Services Review Board (SPRSB), 2010, (Approval Pending), S.-A.
Boukabara and P. Van Delst.
http://projects.osd.noaa.gov/spsrb/standards_docs/Ccode_v1.0.docx

TD 11.2: C Programming Standards and Guidelines, Version 3.0, NOAA NESDIS Center for
Satellite Applications and Research (STAR), 2007, Alward Siyyid et al.
http://www.star.nesdis.noaa.gov/star/documents/PAL/Version3/TrainingDocuments
/STAR_TD-11.2.0_v3r0.pdf

TD 11.1: Fortran Programming Standards and Guidelines, Version 3.0, NOAA NESDIS
Center for Satellite Applications and Research (STAR), 2009, Ken Jensen and Alward
Siyyid, 2009.
http://www.star.nesdis.noaa.gov/star/documents/PAL/Version3/TrainingDocuments
/STAR_TD-11.1.0_v3r0.pdf

TD 11.1A: Transition From Fortran 77 to Fortran 90, Version 3.0, NOAA NESDIS Center for
Satellite Applications and Research (STAR), 2009, Ken Jensen.
http://www.star.nesdis.noaa.gov/star/documents/PAL/Version3/TrainingDocuments
/STAR_TD-11.1.0_v3r0.pdf

Torvalds, Linus, Linux Kernel Coding Standards, v2.6.37, 2007.
http://lxr.linux.no/#linux+v2.6.37/Documentation/CodingStyle

Software Development Guidelines, University of California at Riverside, 2000.
http://www.literateprogramming.com/sdg.pdf

LAND PEATE VIIRS Science Data Processing Software Systems Description, Version 1.2,
Revision B, 2007. http://modis-
sdst.gsfc.nasa.gov/documents/VIIRS_Science_Data_Processing_Software.pdf

http://projects.osd.noaa.gov/spsrb/standards_docs/Fortran95_standard_rev22Jun2009.pdf
http://projects.osd.noaa.gov/spsrb/standards_docs/Fortran95_standard_rev22Jun2009.pdf
http://projects.osd.noaa.gov/spsrb/standards_docs/general_standards_v2.0.docx
http://projects.osd.noaa.gov/spsrb/standards_docs/fortran95_v2.0.docx
http://projects.osd.noaa.gov/spsrb/standards_docs/Ccode_v1.0.docx
http://www.star.nesdis.noaa.gov/star/documents/PAL/Version3/TrainingDocuments/STAR_TD-11.2.0_v3r0.pdf
http://www.star.nesdis.noaa.gov/star/documents/PAL/Version3/TrainingDocuments/STAR_TD-11.2.0_v3r0.pdf
http://www.star.nesdis.noaa.gov/star/documents/PAL/Version3/TrainingDocuments/STAR_TD-11.1.0_v3r0.pdf
http://www.star.nesdis.noaa.gov/star/documents/PAL/Version3/TrainingDocuments/STAR_TD-11.1.0_v3r0.pdf
http://www.star.nesdis.noaa.gov/star/documents/PAL/Version3/TrainingDocuments/STAR_TD-11.1.0_v3r0.pdf
http://www.star.nesdis.noaa.gov/star/documents/PAL/Version3/TrainingDocuments/STAR_TD-11.1.0_v3r0.pdf
http://lxr.linux.no/#linux+v2.6.37/Documentation/CodingStyle
http://www.literateprogramming.com/sdg.pdf
http://modis-sdst.gsfc.nasa.gov/documents/VIIRS_Science_Data_Processing_Software.pdf
http://modis-sdst.gsfc.nasa.gov/documents/VIIRS_Science_Data_Processing_Software.pdf

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

45

Appendix D. Minimum Standards for Robodoc Markup

Code headers are extracted at NCDC using Robodoc, thus the headers must be in a specific
format. There are 3 parts to a Robodoc header.

First, a start tag (lets Robodoc know where to start looking for headers).

Second, individual headers (in capital letters on line by themselves).

Third, a stop tag (lets Robodoc know there are no more headers).

The following are the minimum standards:
!@***h* CDR_Name/name_of_source_code (this is the start tag)
!
! NAME
! The name of the source code file.
!
! PURPOSE
! One or two sentences describing the source code file function.
!
! DESCRIPTION
! A description of the processing performed within this source code file.
! For published algorithms, provide a reference to the publication.
!
! AUTHOR
! A list of those who wrote the code in the file, and their
! organization name. This list can be easily kept up to date if each person that
! works on the code adds his or name.
!
! COPYRIGHT (insert the following statement exactly as written)
! THIS SOFTWARE AND ITS DOCUMENTATION ARE CONSIDERED TO BE IN THE PUBLIC
! DOMAIN AND THUS ARE AVAILABLE FOR UNRESTRICTED PUBLIC USE. THEY ARE
! FURNISHED "AS IS." THE AUTHORS, THE UNITED STATES GOVERNMENT, ITS
! INSTRUMENTALITIES, OFFICERS, EMPLOYEES, AND AGENTS MAKE NO WARRANTY,
! EXPRESS OR IMPLIED, AS TO THE USEFULNESS OF THE SOFTWARE AND
! DOCUMENTATION FOR ANY PURPOSE. THEY ASSUME NO RESPONSIBILITY (1) FOR
! THE USE OF THE SOFTWARE AND DOCUMENTATION; OR (2) TO PROVIDE TECHNICAL
! SUPPORT TO USERS.
!
! REVISION HISTORY
! The revision history of the file in forward chronological order, beginning with
! the initial version. This section should be appended with a new entry each time
! that a revised version of the software is submitted to the CDR Program and more
! often if appropriate. At a minimum changes to algorithms, interfaces, and outputs
! should be documented. For each such revision the new entry should provide version
! identification (at a minimum the revision date), the developer’s initials, a brief
! summary of the changes made, and the reason for the changes.
!
!@***** (this is the end tag)

The relevant comment character for the language can be used in place of the “!”

The following is a short example for IDL:
;@***h* MLT_RSS/check_grpt_maps_AMSU_v3_3.pro
;
; NAME

CDR Program CDRP General Software Coding Standards CDRP-STD-0007
Rev. 2 07/15/2014

A controlled copy of this document is maintained in the CDR Program Library.
Approved for public release; distribution is unlimited.

46

; check_grpt_maps_AMSU_v3_3.pro
;
; PURPOSE
; Check AMSU montly gridded data for months with too little data
; Determines which months to use in merge and returns and array, months_to_use,
; that is used in subsequent steps to choose which satellite months to include
;
; DESCRIPTION
; This routine checks the AMSU GRPT data for months with too little data
;
; INPUTS
; num_arr (should be a (144,72,num_months,num_sats) array of number of obs per
; grid cell sats_to_use (num_AMSUs) array of integers 0 to ignore this satellite,
; 1, to use it num_thres is the threshold for the mean number of observations to be
; good data.
; months_to_use_mask is a (num_months, num_sats) array of integers:
; -1 to exclude
; 0 to use threshold to determine use (the usual case)
; 1 to use even if threshold fails
;
; OUTPUT
; months_to_use (num_months,num_sats) array of months to use in the merge.
; 1 means use,0 means don't use
;
; AUTHOR
; Carl Mears, Remote Sensing Systems
;
; COPYRIGHT
; THIS SOFTWARE AND ITS DOCUMENTATION ARE CONSIDERED TO BE IN THE PUBLIC DOMAIN AND
; THUS ARE AVAILABLE FOR UNRESTRICTED PUBLIC USE. THEY ARE FURNISHED "AS IS." THE
; AUTHORS, THE UNITED STATES GOVERNMENT, ITS INSTRUMENTALITIES, OFFICERS, EMPLOYEES,
; AND AGENTS MAKE NO WARRANTY, EXPRESS OR IMPLIED, AS TO THE USEFULNESS OF THE
; SOFTWARE AND DOCUMENTATION FOR ANY PURPOSE. THEY ASSUME NO RESPONSIBILITY (1) FOR
; THE USE OF THE SOFTWARE AND DOCUMENTATION; OR (2) TO PROVIDE TECHNICAL SUPPORT
; TO USERS.
;
; HISTORY
; 2/21/2019 Initial Version prepared for NCDC
;
; USAGE
; check_grpt_maps_AMSU_v3_3, num_arr,sats_to_use, num_thres,
; months_to_use_mask,months_to_use
;
;@*****

