International Comprehensive Ocean-Atmosphere Data Set (ICOADS)	Release 3.0
The International Maritime Meteorological Archive (IMMA) Format	5 April 2017
Document name:	R3.0-imma1_short
Note: Supps. C-F only as excerpted from the larger background document, R3.0-imma1.	

Supplement C. Record Types

The IMMA *Core* (Table C0) forms the common front-end for all record types. By itself, the *Core*, which is divided into location and regular sections, forms a useful abbreviated record type incorporating many of the most commonly used data elements in standardized form (drawn from the fields to be agreed internationally, listed in Supp. D). Concatenating one or more "attachments" (attm) after the *Core* creates additional record types. At the time of Release 3.0 of ICOADS, in addition to the *Core*, the following attms have been defined:

, , ,	5
Table C0: Core (<i>Core</i>)	(108 characters)
Table C1: ICOADS (<i>Icoads</i>) attm	(65 characters)
Table C5: IMMT-5/FM 13 (Immt) attm	(94 characters)
Table C6: Model quality control (<i>Mod-qc</i>) attm	(68 characters)
Table C7: Ship metadata (Meta-vos) attm	(58 characters)
Table C8: Near-surface oceanographic (Nocn) attm	(102 characters)
Table C9: Edited cloud report (<i>Ecr</i>) attm (see Annex	E) (32 characters)
Table C95: Reanalyses QC/feedback (Rean-qc) attn	n (61 characters)
Table C96: ICOADS Value-added Database (Ivad) a	ttm (53 characters)
Table C97: Error (<i>Error</i>) attm	(32 characters)
Table C98: Unique report ID (Uida) attm	(15 characters)
Table C99: Supplemental data (Suppl) attm	(source-dep. length)
including three deprecated attms:	
Table C2: IMMT-2/FM 13 attm	(76 characters)
Table C3: Model quality control attm	(66 characters)
Table C4: Ship metadata attm	(57 characters)
whose documentation can be found in http://icoads.noaa.gov	v/e-doc/imma/R2.5-imma.pdf

Additionally, the following attms have been proposed (CP):

Table CP1: Automated instrumentation (Auto) attm	(41 characters)
Table CP2: Near-surface oceanographic QC (Nocq) attm	(28 characters)
Table CP3. Alternative QC (<i>Alt-qc</i>) attm	(proposed)
Table CP4: Platform tracking (Track) attm	(proposed)
Table CP5: Historical (Hist) attm	(proposed)

The proposed attms are discussed in Supp. F, but have not been implemented at the time of R3.0. In addition, the following attms are envisioned as further possibilities, but without any suggested content in Supp. F:

Buoy metadata (Meta-buoy) attm	(proposed, no table)
Daily observational (Daily) attm	(proposed, no table)

Throughout Supp. C, each table contains these columns:

- 1 Field number (<u>No.</u>). Field numbering is attm-internal beginning with field number 1 and ending with the last field indicated in each table.
- 2 Length (Len.) in characters (i.e., 8-bit bytes¹).

¹ "Character" fields in IMMA should be limited to the printable set of ASCII characters i.e., 32=space, 33="!", ..., 126="~" (ref. <u>http://en.wikipedia.org/wiki/ASCII#ASCII printable_code_chart</u>).

- 3,4 Abbreviation (<u>Abbr.</u>) for each element (or field), and a brief <u>Element</u> <u>Description</u>.
- 5,6 For fields with a bounded numeric range (either decimal or base36), the minimum (Scaled Min.) and maximum (Scaled Max.) are indicated in decimal (and/or in base36 in [square brackets]). When values are provided for <u>Scaled Min./Max.</u>, they represent the field value multiplied by the numeric part of the <u>Units</u> field (if applicable). In other cases, the range and configuration are listed as: "a" for alphabetic (A-Z), "b" for alphanumeric (strictly 0-Z with no leading blanks), "c" for alphanumeric plus other printable characters, or "u" for undecided form (only for fields that are currently unused). Base36 fields include "[b36]" in the Units column, and, as for decimal numeric fields, any leading missing positions are blank (vs. zero) filled (note: as a consequence, base36 is not always interpretable as alphanumeric). For Base36 encoded fields both the numeric range and Base36 range (in []) are listed for the <u>Scaled Min./Max</u>.

Base36 encoding showing decimal numbers and base36 equivalent values (reproduced from Table 1 in main text above). The complete set of 1-character encodings (0-35) is listed on the left, and examples of 2-character encodings (0-1295) are given on the right. Note that the subset 0-F of base36 is the same as hexadecimal.

-		2000							
		1-ch	aracter ei	ncodin	g:			E.g., 2-charac	ter encoding:
dec.	<u>base36</u>	<u>dec.</u>	<u>base36</u>	dec.	<u>base36</u>	dec.	<u>base36</u>	<u>dec.</u>	<u>base36</u>
0	0	10	А	20	K	30	U	0	0
1	1	11	В	21	L	31	V	1	1
2	2	12	С	22	Μ	32	W	2	2
3	3	13	D	23	Ν	33	Х		
4	4	14	E	24	0	34	Y		
5	5	15	F	25	Р	35	Z		
6	6	16	G	26	Q			1293	ZX
7	7	17	Н	27	R			1294	ZY
8	8	18	I	28	S			1295	ZZ
9	9	19	J	29	Т				

7 <u>Units</u> of data and related WMO <u>codes</u>. Information in parentheses usually relates the IMMA field to a field from Supp. B, Table B2 (if applicable): WMO code symbolic letters are listed, or "•" followed by a field number from Table B2 in the absence of symbolic letters. This information is prefixed by "Δ" to highlight field configurations that are extended in range or modified in form from presently defined WMO representations.

Table C0. IMMA Core.

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Scaled</u> <u>Min.</u>	<u>Scaled</u> <u>Max.</u>	<u>Units (Code) [base36]</u>
			Location section			
1 2 3 4 5 6	4 2 4 5 6	YR MO DY HR LAT LON	(45 characters): year UTC month UTC ¹ day UTC ¹ hour UTC ¹ latitude longitude ¹	1600 1 1 0 -90.00 -179.99	2024 12 31 23.99 90.00 359.99	(AAAA) (MM) (YY) 0.01 hour (Δ GG) 0.01°N (Δ L _a L _a L _a) 0.01°E (Δ L₀L₀L₀L₀)
7	2	10.4		0.00 179.99	359.99 180.00	(ICOADS convention) (obsolete NCDC-variant)
7	2	IM A TTO	IMMA version	0	99	(∆ •65)
8 9 10 11	1 1 1 1	ATTC TI LI DS	attm count time indicator latitude/long. indic. ship course	0 [0] 0 0 0	35 [Z] 3 6 9	[b36] (Ds)
12	1	VS	ship speed	0	9	(Δ vs)
13	2	NID	national source indic. ¹	0	9 99	(± ¥\$)
14	2	II	ID indicator	0	10	
15	9	'' ID	identification/callsign	c	c	(∆ •42)
16	2	C1	country code	b	b	(∆ •42) (∆ •43)
17	1	DI	Regular section (63 characters): wind direction indic.	0	6	
18	3	D	wind direction (true)	1	362	°, 361-2 (∆ dd)
19	1	 WI	wind speed indicator	0	8	(Δ iw)
20 21 22	3 1 2	W VI VV	wind speed VV indic. visibility	0 0 90	99.9 2 99	0.1 m/s (∆ ff) (∆ •9) (VV)
23	2	WW	present weather	0	99	(ww)
24	1	W1	past weather	0	9	(W ₁)
25	5	SLP	sea level pressure	870.0	1074.6	0.1 hPa (∆ PPPP)
26	1	Α	characteristic of PPP	0	8	(a)
27 28 29	3 1 4	PPP IT AT	amt. pressure tend. indic. for temperatures air temperature	0 0 99.9	51.0 9 99.9	0.1 hPa (ppp) (Δ iτ) 0.1°C (Δ s _n , TTT)
30	1	WBTI	WBT indic.	0	3	(ΔS_w)
31	4	WBT	wet-bulb temperature	-99.9	99.9	$0.1^{\circ}C (\Delta s_w, T_bT_bT_b)$
32	1	DPTI	DPT indic.	0	3	(ΔSt)
33	4	DPT	dew-point temperature	-99.9	99.9	0.1°C (Δ s _t , T _d T _d T _d)
34	2	SI	SST meas. method	0	12	(∆ ●30)
35	4	SST	sea surface temp.	-99.9	99.9	$0.1^{\circ}C (\Delta s_n, T_wT_wT_w)$
36	1	N	total cloud amount	0	9	(N)
37	1	NH	lower cloud amount	0	9	(N_h)
38 39	1 1	CL HI	low cloud type <i>H</i> indic.	0 [0] 0	10 [A] 1	(∆ C∟) [b36] (∆ ∙9)

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Scaled</u> <u>Min.</u>	<u>Scaled</u> <u>Max.</u>	<u>Units (Code) [base36]</u>
40	1	Н	cloud height	0 [0]	10 [A]	(Δ h) [b36]
41	1	СМ	middle cloud type	0 [0]	10 [A]	(Δ C _M) [b36]
42	1	СН	high cloud type	0 [0]	10 [A]	(Δ Сн) [b36]
43	2	WD	wave direction	0	38	
44	2	WP	wave period	0	30, 99	seconds (PwPw)
45	2	WH	wave height	0	99	(HwHw)
46	2	SD	swell direction	0	38	(d _{w1} d _{w1})
47	2	SP	swell period	0	30, 99	seconds (Pw1Pw1)
48	2	SH	swell height	0	99	(Hw1Hw1)

1. Fields differing from the ICOADS-standard representation in the obsolete NCDC-variant format (see Supps. D-E for further details). For *MO*, *DY*, and *HR*, the NCDC-variant format used leading zeros as an exception to the "blank left-fill" aspect of the ICOADS-standard representation for numeric data.

Table C1. ICOADS (Icoads) attm.

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Scaled</u> <u>Min.</u>	<u>Scaled</u> <u>Max.</u>	<u>Units (Code) [base36]</u>
1	2	ATTI	attm ID			Note: set ATTI=1
2	2	ATTL	attm length			Note: set ATTL=65
			Box elements (6 characters):			
3	1	BSI	box system indicator	u	u	(currently set to missing)
4	3	B10	10° box number	1	648	(ICOADS BOX10 system)
5	2	B1	1° box number	0	99	
			Processing elements (17 characters):			
6	3	DCK	deck	0	999	
7	3	SID	source ID	0	999	
8	2	PT	platform type	0	21	[Note: Max.=15 in IMMA0 documentation was error]
9	2	DUPS	dup status	0	14	-
10	1	DUPC	dup check	0	2	
11	1	ТС	track check	0	1	
12	1	PB	pressure bias	0	2	
13	1	WX	wave period indicator	1	1	
14	1	SX	swell period indicator	1	1	
15	2	C2	2nd country code	0	40	
		607	QC elements (38 characters):			
16-27	1×12	SQZ- DQA ¹	adaptive QC flags	1 [1]	35 [Z]	(12 flags) ² [b36]

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Scaled</u> <u>Min.</u>	<u>Scaled</u> <u>Max.</u>	<u>Units (Code) [base36]</u>
28	1	ND	night/day flag	1	2	
29-34	1×6	SF-RF ¹	trimming flags	1 [1]	15 [F]	(6 flags) ² [b36]
35-48	1×14	ZNC- TNC ¹	NCDC-QC flags	1 [1]	10 [E]	(14 flags) ² [b36]
49	2	QCE ³	external (e.g., OSD)	0	63	integer encoding (6 flags)
50	1	LZ	2°×2° landlocked flag	1	1	
51	2	QCZ ³	source exclusion flags	0	31	integer encoding (5 flags)

1. A set of flags (elaborated briefly here and in Table C1a; see *R3.0-stat_trim* for detailed information: http://icoads.noaa.gov/e-doc/R3.0-stat_trim.pdf) is stored in each of these element lengths. The first letter of each such QC flag indicates the applicable fields(s) (or if the QC applies to an entire report), according to the following general scheme (referring, except as noted, to field abbreviations from Table C0): *A=AT*, *B=VV*, *C*=clouds⁴ (*N*, ..., *CH*), *D=DPT*, *E*=wave, *F*=swell, *G=WBT*, *P=SLP*, *R*=humidity variables (relative humidity, *DPT*, and/or *WBT*, depending on QC scheme), *S=SST*, *T=A* and *PPP*, *U* or *V*=wind U- or V-component (monthly summary variables not in Table C0), *W*=wind, *X=WW*, *Y=W1*, *Z*=entire report. The lists of flag abbreviations are then:

• Adaptive QC flags: SQZ, SQA, AQZ, AQA, UQZ, UQA, VQZ, VQA, PQZ, PQA, DQZ, DQA (two flags × 12 variables).

• Trimming flags: SF, AF, UF, VF, PF, RF (one flag × six variables).

• NCDC-QC flags: ZNC, WNC, BNC, XNC, YNC, PNC, ANC, GNC, DNC, SNC, CNC, ENC, FNC, TNC one flag × 14 variables).

2. *R3.0-stat_trim* (<u>http://icoads.noaa.gov/e-doc/R3.0-stat_trim.pdf</u>) provides further information about how to convert the coded (base36) values stored in these flags into true (floating-point) values (handled automatically by {rwimma1}).

3. Handled as a single element by {rwimma1}, but actually holds a set of flags (elaborated as follows, and in Table C1a), which must be decoded separately. Using the 1st-letter naming scheme described in the first footnote, the abbreviations for the flags stored in *QCE* are: *ZE*, *SE*, *AE*, *WE*, *PE*, *RE*; and those stored in *QCZ* are: *SZ*, *AZ*, *WZ*, *PZ*, *RZ*. Flag *RE*, presently unused, has been set aside for possible future use. *R3.0-stat_trim* (http://icoads.noaa.gov/e-doc/R3.0-stat_trim.pdf) provides further information about how to decode the information stored within *QCE* and *QCZ*.

4. Further details on the NCDC-QC (e.g., noting which parameters are considered in the cloud group) can be found in *Release 1*, supp. J (<u>http://icoads.noaa.gov/Release 1/suppJ.html</u>).

Table C1a lists the QC elements available (some presently obsolete or unused, as noted) as part of the *lcoads* attm.

Table C1a (note: Table 1 in *R3.0-stat_trim: <u>http://icoads.noaa.gov/e-doc/R3.0-stat_trim.pdf</u>). QC elements within the <i>lcoads* attm (fields 1-15 of that attm are described in Table C1). Grey shaded flags presently are unused.

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	Scaled <u>Min.</u>	Scaled <u>Max.</u>	<u>Units (Code)</u>
			QC elements (38 characters):			
			Adaptive QC flags (12 characters; only SQZ-SQA in use):			
16	1	SQZ	SST: z flag	1	35	base36 (obsolete)
17	1	SQA	SST: alpha flag	1	21	base36 (obsolete)
18	1	AQZ	AT: z flag			(unused)
19	1	AQA	<i>AT</i> : alpha flag			(unused)

<u>No.</u>	Len.	<u>Abbr.</u>	Element description	Scaled <u>Min.</u>	Scaled <u>Max.</u>	<u>Units (Code)</u>
20	1	UQZ	U-wind: z flag			(unused)
21	1	UQA	U-wind: alpha flag			(unused)
22	1	VQZ	V-wind: z flag			(unused)
23	1	VQA	V-wind: alpha flag			(unused)
24	1	PQZ	SLP: z flag			(unused)
25	1	PQA	SLP: alpha flag			(unused)
26	1	DQZ	Humidity: z flag			(unused)
27	1	DQA	Humidity: alpha flag			(unused)
			Night/day flag (1 character):			
28	1	ND	night/day flag	1	2	
			Trimming flags (6 characters):			
29	1	SF	SST flag	1	15 [F]	base36
30	1	AF	AT flag	1	15 [F]	base36
31	1	UF	U-wind flag	1	15 [F]	base36
32	1	VF	V-wind flag	1	15 [F]	base36
33	1	PF	SLP flag	1	15 [F]	base36
34	1	RF	RH (& WBT/DPT) flag	1	15 [F]	base36
			NCDC-QC flags (14 characters): report-status flag (ship			
35	1	ZNC	position)	1	10 [A]	base36
36	1	WNC	wind flag	1	10 [A]	base36
37	1	BNC	visibility (VV) flag	1	10 [A]	base36
38	1	XNC	present weather (<i>WW</i>) flag	1	10 [A]	base36
39	1	YNC	past weather (W1) flag	1	10 [A]	base36
40	1	PNC	SLP flag	1	10 [A]	base36
41	1	ANC	AT flag	1	10 [A]	base36
42	1	GNC	WBT flag	1	10 [A]	base36
43	1	DNC	DPT flag	1	10 [A]	base36
44	1	SNC	SST flag	1	10 [A]	base36
45	1	CNC	cloud flag	1	10 [A]	base36
46	1	ENC	wave flag	1	10 [A]	base36
47	1	FNC	swell flag	1	10 [A]	base36
48	1	TNC	pressure tendency (A and <i>PPP</i>) flag	1	10 [A]	base36
49	2	QCE	External flags (i.e., 2-char. <i>QCE</i> when decoded into six flags ¹):	0	63	integer encoding (6 flags)
		ZE	report-status flag	1	1	1 = erroneous (based on OSD quality control)

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	Scaled <u>Min.</u>	Scaled <u>Max.</u>	<u>Units (Code)</u>
		SE	SST flag	1	1	II
		AE	AT flag	1	1	И
		WE	wind flag	1	1	И
		PE	SLP flag	1	1	Ш
		RE	RH (WBT/DPT) flag	1	1	(unused)
50	1	LZ	Landlocked flag (1-character): 2°×2° landlocked flag	1	1	
51	2	QCZ	Source exclusion flags (i.e., 2-char. <i>QCZ</i> when decoded into five flags ¹):	0	31	integer encoding (5 flags)
		SZ	SST flag	1	1	data excluded from enhanced or standard trimmed IMMA/MSG (in addition to other QC flag criteria, see Table 8)
		AZ	AT flag	1	1	"
		WZ	wind flag	1	1	II
		PZ	SLP flag	1	1	Ш
		RZ	RH (WBT/DPT) flag	1	1	

1. The Appendix describes about how to convert the coded (base36) values stored in these flags into true (floating-point) values (handled automatically by {rwimma1}).

Note: Tables C2, C3, and C4 are assigned to deprecated attms (IMMT-2/FM 13, Model quality control, and Ship metadata, respectively) associated with R2.5. Documentation for these tables and deprecated attms can be found <u>http://icoads.noaa.gov/e-doc/imma/R2.5-imma.pdf</u>.

Table C5. IMMT-5/FM 13 (*Immt*) attm. This attm includes data fields that are widely applicable to Voluntary Observing Ship (VOS) data reported in formats other than IMMT and FM 13.

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Scaled</u> <u>Min.</u>	<u>Scaled</u> <u>Max.</u>	<u>Units (Code) [base36]</u>
1	2	ATTI	attm ID			Note: set ATTI=5
2	2	ATTL	attm length			Note: set ATTL=94
			Common for IMMT- 2/3/4/5 (49 characters):			
3	1	OS	observation source	0	6	(•40)
4	1	OP	observation platform	0	9	(•41)
5	1	FM	FM code version	0 [0]	35 [Z]	(∆ •64) [b36]

<u>No.</u>	Len.	<u>Abbr.</u>	Element description	<u>Scaled</u> <u>Min.</u>	<u>Scaled</u> <u>Max.</u>	<u>Units (Code) [base36]</u>
6	1	IMMV	IMMT version	0 [0]	35 [Z]	[b36]
7	1	IX	station/weather indic.	1	7	(i _X)
8	1	W2	2nd past weather	0	9	(W ₂)
9	1	WMI	indic. for wave meas.	0	9	(•31)
10	2	SD2	dir. of second. swell	0	38	(dw2dw2)
11	2	SP2	per. of second. swell	0	30, 99	(Pw2Pw2)
12	2	SH2	ht. of second. swell	0	99	(H _{W2} H _{W2})
13	1	IS	ice accretion on ship	1	5	(ls)
14	2	ES	thickness of Is	0	99	cm (EsEs)
15	1	RS	rate of Is	0	4	(R _s)
16	1	IC1	concentration of sea ice	0 [0]	10 [A]	(∆ ci) [b36]
17	1	IC2	stage of development	0 [0]	10 [A]	(Δ Si) [b36]
18	1	IC3	ice of land origin	0 [0]	10 [A]	(∆ b _i) [b36]
19	1	IC4	true bearing ice edge	0 [0]	10 [A]	(Δ Di) [b36]
20	1	IC5	ice situation/trend	0 [0]	10 [A]	(Δ zi) [b36]
21	1	IR	indic. for precip. data	0	4	(i _R)
22	3	RRR	amount of precip.	0	999	(RRR)
23	1	TR	duration of per. RRR	1	9	(t _R)
24	1	NU	national use	с	С	(national practice)
25	1	QCI	quality control indic.	0	9	(•45)
26-45	1×20	QI1-20	QC indic. for fields	0	9	(Q1-Q20)
			New for IMMT-2/3/4/5 (41 characters):			
46	1	Q/21	MQCS version	0	9	(Q ₂₁)
47	3	HDG	ship's heading	0 ¹	360	0, ° (HDG)
48	3	COG	course over ground	0	360	0, ° (COG)
49	2	SOG	speed over ground	0	99	kt (SOG)
50	2	SLL	max.ht.>Sum. load In.	0	99	m (SLL)
51	3	SLHH	dep. load In.: sea lev.	-99	99	m (s∟hh)
52	3	RWD	relative wind direction	1	362	°, 361-2 ² (ref. <i>D</i>)
53	3	RWS	relative wind speed	0	99.9	0.1 m/s (ref. <i>W</i>)
54-61	1×8	Q/22-29	QC indic. for fields	0	9	(Q ₂₂ -Q ₂₉) ³
62	4	RH	relative humidity	0.0	100.0	0.1%
63	1	RHI	relative humidity indic.	0	4	(RHi)
64	1	AWSI	AWS indicator	0	2	(AWSi)
65	7	IMONO	IMO number	0	9999999	(IMOno)

 Zero is documented to mean "no movement," but has been suggested should not be used (see Supp. D).
Special code 362 for "variable, or all directions" is allocated in IMMA, but IMMT does not presently contain a corresponding configuration for *RWS* (see Supp. D).

3. As from IMMT-4 and IMMT-5, usage of Q_{26} is discontinued, see Table B3 and IMMT-5 documentation (<u>https://www.wmo.int/pages/prog/amp/mmop/documents/IMMT-5-JCOMM-4.pdf</u>): "now Q_{27} serves as the indicator for both S_L and HH."

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Scaled</u> <u>Min.</u>	<u>Scaled</u> <u>Max.</u>	<u>Units (Code) [base36]</u>
1	2	ATTI	attm ID			Note: set ATTI=6
2	2	ATTL	attm length			Note: set ATTL=68
3	4	CCCC	GTS bull. header fields (10 characters): collecting center	а	а	COLTN_CNTR
4	6	BUID	bulletin ID	b	b	BLTN_IDNY
5	1	FBSRC	Model comp. elements (54 characters): Feedback source	0	0	(0=operational)
6	5	BMP	background (bckd.) SLP	870.0	- 1074.6	0.1 hPa;
-	-		Dackyrounu (Dcku.) SLF			BCKD_MSL_PESR 0.1 m/s;
7	4	BSWU	bckd. wind U-comp.	-99.9	99.9	BCKD_SRFC_WIND_U
8	4	SWU	derived wind U-comp.	-99.9	99.9	0.1 m/s; SRFC_WIND_U
9	4	BSWV	bckd. wind V-comp.	-99.9	99.9	0.1 m/s; BCKD_SRFC_WIND_V
10	4	SWV	derived wind V-comp.	-99.9	99.9	0.1 m/s; SRFC_WIND_V
11	4	BSAT	bckd. air temperature	-99.9	99.9	0.1°C; BCKD_SRFC_AIR_TMPR
12	3	BSRH	bckd. relative humidity	0	100	%; BCKD_SRFC_RLTV_HUMDY
13	3	SRH	(derived) relative humidity	0	100	%; SRFC_RLTV_HUMDY
14	5	BSST	bckd. SST	-99.99	99.99	0.01°C; BCKD_SEA_SRFC_TMPR
15	1	MST	model surface type	0	9	(UK 008204); MODL_SRFC_TYPE
16	4	MSH	model height of surface	-999	9999	m; MODL_SRFC_HGHT
17	4	BY	bckd. year	0	9999	year; BCKD_YEAR
18	2	BM	bckd. month	1	12	month; BCKD_MNTH
19	2	BD	bckd. day	1	31	day; BCKD_DAY
20	2	BH	bckd. hour	0	23	hour; BCKD_HOUR
21	2	BFL	bckd. forecast length (time period or displacement minute)	0	99	hours BCKD_FRCT_LNGH

Table C6. Model quality control (*Mod-qc*) attm. For reference, the Units column also includes (following any units information) the current UK Met Office BUFR element names.

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Scaled</u> <u>Min.</u>	<u>Scaled</u> <u>Max.</u>	<u>Units (Code) [base36]</u>
1	2	ATTI	attm ID			Note: set ATTI=7
2	2	ATTL	attm length			Note: set ATTL=58
			Ship metadata elements (54 characters):			
3	1	MDS	metadata source	0	1	(0=WMO Pub. 47; 1=COAPS)
4	2	C1M	recruiting country	а	а	(∆ ∙43)
5	2	OPM	type of ship (program)	0	99	(code unlike OP)
6	2	KOV	kind of vessel	С	С	
7	2	COR	country of registry	а	а	(∆ ∙43)
8	3	TOB	type of barometer	С	С	
9	3	тот	type of thermometer	С	С	
10	2	EOT	exposure of thermometer	С	С	
11	2	LOT	screen location	С	С	
12	1	ТОН	type of hygrometer	С	С	
13	2	EOH	exposure of hygrometer	С	С	
14	3	SIM	SST meas. method	С	С	(code unlike SI)
15	3	LOV	length of vessel	0	999	М
16	2	DOS	depth of SST meas.	0	99	М
17	3	HOP	height of visual observation platform	0	999	Μ
18	3	НОТ	height of AT sensor	0	999	М
19	3	HOB	height of barometer	0	999	М
20	3	HOA	height of anemometer	0	999	М
21	5	SMF	source metadata file	0	99999	e.g., "19991" 1st Q 1991
22	5	SME	source meta. element	0	99999	line number in file
23	2	SMV	source format version	0	99	(see Berry et al. 2009 ¹)

Table C7. Ship metadata (*Meta-vos*) attm. For more information, including other fields available in WMO Pub. 47 but not selected for this attm, see Berry et al. (2009; <u>http://icoads.noaa.gov/e-doc/imma/WMO47IMMA_1966_2007-R2.5.pdf</u>).

Table C8. Near-surface oceanographic data (*Nocn*) attm. Field contents are tailored to the specialized requirements of capturing data deemed most relevant to marine meteorology from the World Ocean Database (e.g., WOD13; <u>http://www.nodc.noaa.gov/OC5/WOD13/</u>).

٦

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Scaled</u> <u>Min.</u>	<u>Scaled</u> <u>Max.</u>	<u>Units (Code) [base36]</u>
1	2	ATTI	attm ID			Note: set ATTI=8
2	2	ATTL	attm length			Note: set <i>ATTL</i> =102 [2U] [b36]
			Near-surface oceanographic data and metadata (98 characters):			

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Scaled</u> <u>Min.</u>	<u>Scaled</u> <u>Max.</u>	<u>Units (Code) [base36]</u>
3	5	OTV	temperature value	-3.000	38.999	0.001°C ¹
4	4	OTZ	temperature depth	0.00	99.99	0.01 m
5	5	OSV	salinity value	0.000	40.999	0.001 (unitless)
6	4	OSZ	salinity depth	0.00	99.99	0.01 m
7	4	OOV	dissolved oxygen	0.00	12.99	0.01 milliliter/liter
8	4	00Z	dissolved oxygen depth	0.00	99.99	0.01 m
9	4	OPV	phosphate value	0.00	30.99	0.01 micromole/liter
10	4	OPZ	phosphate depth	0.00	99.99	0.01 m
11	5	OSIV	silicate value	0.00	250.99	0.01 micromole/liter
12	4	OSIZ	silicate depth	0.00	99.99	0.01 m
13	5	ONV	nitrate value	0.00	500.99	0.01 micromole/liter
14	4	ONZ	nitrate depth	0.00	99.99	0.01 m
15	3	OPHV	pH value	6.20	9.20	0.01 (unitless)
16	4	OPHZ	pH depth	0.00	99.99	0.01 m
17	4	OCV	total chlorophyll value	0.00	50.99	0.01 microgram/liter
18	4	OCZ	total chlorophyll depth	0.00	99.99	0.01 m
19	3	OAV	alkalinity value	0.00	3.10	0.01 milliequivalent/liter
20	4	OAZ	alkalinity depth	0.00	99.99	0.01 m
21	4	OPCV	partial pressure of carbon dioxide value	0.0	999.0	0.1 microatmosphere
22	4	OPCZ	partial pressure of carbon dioxide depth	0.00	99.99	0.01 m
23	2	ODV	dissolved inorganic carbon value	0.0	4.0	0.1 millimole/liter
24	4	ODZ	dissolved inorganic carbon depth	0.00	99.99	0.01 m
25	10	PUID	provider's unique record Identification	С	С	

1. The SST min. and max. limits in the Core (Table C0) are -99.0 to 99.0°C with a precision of 0.1°C, this attachment has greater precision as is appropriate for modern oceanographic profile data, with a max. value based roughly on QC limits from the GOSUD program.

Table C9. "Edited Cloud Report" (*Ecr*) attm. Elements as outlined originally in Hahn and Warren (1999). Cloud variables *Ne, NHe, He, CLe, CMe,* and *CHe* correspond (i.e., abbreviations without trailing "e") to variables in the IMMA *Core,* but may be "edited" as described in Supp. D.

<u>No.</u>	<u>Len</u>	<u>Abbr.</u>	Element description	<u>Scaled</u> <u>Min.</u>	<u>Scaled</u> <u>Max.</u>	<u>Units (Code) [base36]</u>
1	2	ATTI	attm ID			Note: set ATTI=9
2	2	ATTL	attm length			Note: set ATTL=32
			EECR Basic Cloud Elements (15 characters):			
3	1	CCe	change code	0 [0]	13 [D]	[b36]
4	2	WWe	present weather	0	99	(<i>WW</i>)

<u>No.</u>	<u>Len</u>	<u>Abbr.</u>	Element description	<u>Scaled</u> <u>Min.</u>	<u>Scaled</u> <u>Max.</u>	<u>Units (Code) [base36]</u>
5	1	Ne	total cloud amount	0	8	(N; N=9 edited)
6	1	NHe	lower cloud amount	0	8	(NH; NH=9 edited)
7	1	He	lower cloud base height	0	9	(H)
8	2	CLe	low cloud type	0	11	(CL edited)
9	2	CMe	middle cloud type	0	12	(CM edited)
10	1	CHe	high cloud type	0	9	(CH edited)
11 12 13	3 3 1	AM AH UM	EECR Derived Cloud Elements (8 characters): middle cloud amount high cloud amount NOL middle amount	0 0 0	8.00 8.00 8	0.01 oktas 0.01 oktas oktas
14	1	UH	NOL high amount	0	8	oktas
15	1	SBI	EECR Sky Brightness Elements (9 characters): sky-brightness indicator	0	1	
16	4	SA	solar altitude	-90.0	90.0	0.1 degrees
17	4	RI	relative lunar illuminance	-1.10	1.17	hundredths

Table C95. Reanalyses QC/feedback (*Rean-qc*) attm. Intended to store selected QC and feedback information on the ICOADS observations, as made available from reanalysis projects.

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Scaled</u> <u>Min.</u>	<u>Scaled</u> <u>Max.</u>	<u>Units (Code) [base36]</u>
1	2	ATTI	attm ID			Note: set ATTI=95
2	2	ATTL	attm length	b	b	Note: set ATTL=61
3 4	2 2	ICNR FNR	Reanalysis QC/ feedback data and metadata (57 characters): input component number— <i>Rean-qc</i> field number— <i>Rean-qc</i>	0 1	99 99	IMMA component number IMMA field no. within <i>ICNR</i>
5	2	DPRO	data provider— reanalysis: lead organization	1	99	lead organization ID (e.g., 1=ECMWF, 2=NOAA- NCEP, 3=NASA, 4=JMA)
6	2	DPRP	data provider— reanalysis: project	1	99	project ID (e.g., 1=ERA- 20C, 2=CFSRv2, 3=MERRA, 4=JRA-55)
7	1	UFR	usage flag—reanalysis	1	6	1=assimilated and used, 2=assimilated and rejected, 3=blacklisted ¹ , 4=whitelisted ² ,

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Scaled</u> <u>Min.</u>	<u>Scaled</u> <u>Max.</u>	<u>Units (Code) [base36]</u>
						5=available but unused, 6=none apply
8	7	MFGR	model-collocated first guess value or representative value in the case of ensemble methods	(inh. ³)	(inh. ³)	Inherited from <i>ICNR</i> & <i>FNR</i> , with numerical precision increased by one (additional) position right of the decimal to better accommodate numerical precision used in the assimilation process
9	7	MFGSR	model-collocated first guess spread ⁴ model-collocated analysis	-999999 ⁵	9999999 ⁵	n n
10	7	MAR	value or representative value in the case of ensemble methods	(inh. ³)	(inh. ³)	и и
11	7	MASR	model-collocated analysis spread ⁴	-999999 ⁵	9999999 ⁵	u u
12	7	BCR	bias corrected value	(inh.³)	(inh.³)	и и
13	4	ARCR	author reference code— <i>Rean-qc</i> ⁶	b	b	(alphanumeric)
14	8	CDR	creation date—Rean-qc7	20140101	2nnn1231	ISO-8601, YYYYMMDD
15	1	ASIR	access status indic.— <i>Rean-qc</i>	0	1	0=active, 1=inactive

1. Determined *a priori* to be erroneous and is not used.

2. Determined a priori to be used regardless of assimilation assessment.

3. The range, numeric precision, and units of measurement are all inherited from *ICNR* & *FNR*, e.g., *ICNR*=0 and *FNR*=29 refer to *AT*, which can range from –99.9 to 99.9, with precision and units of 0.1°C. Thus feedbacks on *AT* stored in this attm in *MFGR*, *MAR* and *BCR* have precision increased to 0.01°C, with range –99.99 to 99.99.

4. Optional field, used in the case of ensemble reanalyses.

5. Note: these ranges differ from those specified in other tables (e.g., -99.9 to 99.9 for *AT*) in that they represent scaled values (i.e., no decimal points are listed, if applicable).

6. ARCR as an optional field that is intended to point to a publication or technical report.

7. To be set by the external developer, as to when they produced the attm, ref.:

http://en.wikipedia.org/wiki/ISO_8601.

Table C96. ICOADS Value-Added Database (*Ivad*) attm. Intended to store adjusted fields associated with *INCI* and *FNI*, whereas the unadjusted data will continue to be stored in the *Core*/other attms.

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Scaled</u> <u>Min.</u>	<u>Scaled</u> <u>Max.</u>	<u>Units (Code) [base36]</u>
1	2	ATTI	attm ID			Note: set ATTI=96
2	2	ATTL	attm length			Note: set ATTL=53
			Value-added data and metadata (49 characters):			
3	2	ICNI	input component number— <i>Ivad</i>	0	99	IMMA component number

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Scaled</u> <u>Min.</u>	<u>Scaled</u> <u>Max.</u>	<u>Units (Code) [base36]</u>
4	2	FNI	field number—Ivad	1	99	IMMA field no. within ICNI
5	1	JVAD	scaling factor for VAD	0 [0]	35 [Z]	10 ^{JVAD} ([b36]) ¹
6	6	VAD	value-added data	(inh.)	(inh.)	10 ^{-JVAD} (units inherited) ²
7	1	IVAU1	type indicator for VAU1	1 [1]	35 [Z]	([b36])
8	1	JVAU1	scaling factor for VAU1	0 [0]	35 [Z]	10 ^{JVAU1} ([b36]) ¹
9	6	VAU1	uncertainty of type IVAU1	-99999	999999	10 ^{-JVAU1} (units inherited) ²
10	1	IVAU2	type indicator for VAU2	1 [1]	35 [Z]	([b36])
11	1	JVAU2	scaling factor for VAU2	0 [0]	35 [Z]	10 ^{JVAU2} ([b36]) ¹
12	6	VAU2	uncertainty of type IVAU2	-99999	999999	10 ^{-JVAU2} (units inherited) ²
13	1	IVAU3	type indicator for VAU3	1 [1]	35 [Z]	([b36])
14	1	JVAU3	scaling factor for VAU3	0 [0]	35 [Z]	10 ^{JVAU3} ([b36]) ¹
15	6	VAU3	uncertainty of type IVAU3	-99999	999999	10 ^{-JVAU3} (units inherited) ²
16	1	VQC	value-added QC flag	1	4, 9	(see Supp D., Table C96a)
17	4	ARCI	author reference code– Ivad	b	b	(alphanumeric)
18	8	CDI	creation date—Ivad	20140101	2nnn1231	ISO-8601, YYYYMMDD (as for <i>CDR</i> , ref. Table C95)
19	1	ASII	access status indic.— Ivad	0	1	0=active, 1=inactive

1. Scaling factor applied to convert "*FVAD*," an input floating-point value, into *VAD* (i.e., representing also *VAU1*, *VAU2*, or *VAU3*) according to $VAD = FVAD \times 10^{JVAD}$. Then the original un-scaled value is reconstructed according to $FVAD = VAD \times 10^{-JVAD}$.

2. Only the units of measurement are inherited from *ICNI* & *FNI* (e.g., *ICNI*=0 and *FNI*=29 refer to *AT*, which has units of °C); the scaled range is as specified, and the numeric precision is determined (e.g., at run time by {rwimma1}) from the scaling factor (e.g., again taking the *AT* case: 0 = whole °C, 1 = 0.1°C, 2 = 0.01°C, etc.).

Table C97. Error (*Error*) attm. Designed to support correction of erroneous IMMA elements. Errors (e.g., callsign garbling) for a given *ICNE* and *FNE* will be stored by ICOADS in the *Core*/other attms, whereas uncorrected data will be stored in this *Error* attm—this is an inversion of the planned handling of data adjustments using the *Ivad* attm.

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Scaled</u> <u>Min.</u>	<u>Scaled</u> <u>Max.</u>	<u>Units (Code) [base36]</u>
1	2	ATTI	attm ID			Note: set ATTI=97
2	2	ATTL	attm length			Note: set ATTL=32
3	2	ICNE	Corrected erroneous data and metadata: input component number— <i>Error</i>	0	99	IMMA component number
4	2	FNE	field number—Error	1	99	IMMA field no. within ICNE
5	1	CEF	corrected/erroneous field flag	0	1	0: <i>ERRD</i> is the corrected value; 1: <i>ERRD</i> is the erroneous value
6	10	ERRD	corrected/erroneous field value	C ¹	C ¹	(units & numeric precision inherited from <i>ICNE</i> & <i>FNE</i>)

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Scaled</u> <u>Min.</u>	<u>Scaled</u> <u>Max.</u>	<u>Units (Code) [base36]</u>
7	4	ARCE	author reference code- Error	b	b	(alphanumeric)
8	8	CDE	creation date—Error	20140101	2nnn1231	ISO-8601, YYYYMMDD (as for <i>CDR</i> , ref. Table C95)
9	1	ASIE	access status indic.— <i>Track</i>	0	1	0=active, 1=inactive

1. {rwimma1} initializes *ERRD Min., Max.* to c c but these values are changed to *(inh.)* after *ICNE* and *FNE* are known; fields are right-justified, e.g., *ID* is left-justified in *ERRD* characters two through ten.

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Scaled</u> <u>Min.</u>	<u>Scaled</u> <u>Max.</u>	<u>Units (Code) [base36]</u>
1	2	ATTI	attm ID			Note: set ATTI=98
2	2	ATTL	attm length			Note: set ATTL=15
			Processing elements (10 characters):			
3	6	UID	unique report ID	b	b	(alphanumeric ¹)
4	1	RN1	Release no .: primary	0 [0]	35 [Z]	e.g., 3 [b36]
5	1	RN2	Release no.: secondary	0 [0]	35 [Z]	e.g., 0 [b36]
6	1	RN3	Release no .: tertiary	0 [0]	35 [Z]	e.g., 0 (thus 3.0.0 together) [b36]
7	1	RSA	Release status indicator	0	2	0=Prelim., 1=Aux., 2=Full
8	1	IRF	intermediate reject flag	0	2	0=Retain in Intermediate, Reject from Final dataset; 1=Retain in both Intermediate and Final datasets; 2=Reject from both Intermediate and Final datasets

Table C98. Unique report ID (Uida) attm.

1. While it represents a base36 number, this field is handled by {rwimma1} as strictly (i.e., without leading spaces, e.g., 35=00000Z) alphanumeric, and thus is not fully translated into an integer or floating-point (REAL) number (ref. {rwimma1} comments: "For character [...] fields, note that ITRUE and FTRUE contain the ICHAR of the first character of the field..."). Separate from {rwimma1} however, this Fortran library is available to transform *UID* into an integer (and vice versa): <u>http://icoads.noaa.gov/software/base36.f</u>. Users interested in handling *UID* as a number should be aware of possible finite precision issues arising in the representation of large numbers on computers:

In the integer case, the largest 6-character base36 number is ZZZZZZ (2,176,782,335); however, if one bit is reserved for sign, the largest positive integer representable in 32 bits is only 2³¹–1 (2,147,483,647; ZIK0ZJ in base36). As noted below the current maximum of *UID* is *m*_{R2.5i} (~295M) and thus well below this threshold.

• Whereas, in the floating-point case it is not even possible to accurately represent *m*_{R2.5i} as a 32-bit single precision REAL number.

Table C99. Supplemental data (*Suppl*) attm. This attm stores the original input data string, with recommended settings *ATTL*=0 (unspecified length) and *ATTE*=missing (ASCII). For processing via {rwimma1}, this attm must appear at the end of the record, and the record must terminate with a line feed.

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Min.</u>	<u>Max.</u>	<u>Units (Code) [base36]</u>
1	2	ATTI	attm ID			Note: set ATTI=99
2	2	ATTL	attm length			Note: set ATTL=01
3	1	ATTE	attm encoding	0	1	Note: set ATTE=missing ²
			Supplemental data (format determined by data source):			
4		SUPD ¹	supplemental data	с	С	

1. The length of the supplemental data is unspecified if *ATTL*=0, and may be variable. Thus far, *ATTL* in bytes has not been supported in the read/write IMMA programs (e.g., {rwimma1}).

2. Thus far, *ATTE*=1 (hexadecimal) has been used only for MORMET (deck 732) data (to represent binary input). This printable representation, which {rwimma1} treats identically to ASCII, was undocumented in previously available (i.e., IMMA0) Suppl. D information. In addition, while the *ATTE*=0 (base64 encoding; unprintable) representation is documented in Suppl. D, currently it is unused and not fully implemented in {rwimma1}.

Supplement D. Field Configurations

This supplement provides configuration details for the individual fields listed in Supp. C. References to external information include the WMO *Manual on Codes* (2009a) and its Codes and Regulations governing e.g., the SHIP (FM 13) GTS code. Background notes indented below field descriptions provide additional usage or technical information, e.g., comparing field configurations with other formats, such as IMMT (Supp. B), COADS *Release 1* (Slutz et al. 1985), or LMR (<u>http://icoads.noaa.gov/e-doc/Imr</u>). Further detailed technical notes related more specifically to ICOADS, and to its current Release 3.0 (R3.0; Freeman et al. 2016) appear enclosed in [square brackets].

The IMMA field abbreviations are simple alphabetic strings (plus in some cases numeric suffixes), based generally on GTS (or IMMT) symbolic letters (if defined) but without subscripts. These are listed in *UPPER-CASE*, for broad computer portability. As discussed in Supp. A, symbolic abbreviations already provide an important means of communication about the fields and data among Member countries and end-users. However, a transition away from subscripts is recommended to facilitate computerized implementation (e.g., headings for listings of the data).

The configurations of numeric fields were developed on the basis of representations readily input and output by computer software. Fields are right justified within the specified field-widths (Supp. C), and to reduce data-volume decimal points are implicit (e.g., -99.9 is represented as -999). For signed numeric data, the plus sign ("+") is omitted, and the minus sign ("-") immediately prefixes the numeric portion (i.e., blank left-fill²). These conventions have the advantage that numeric data can be readily input without separate steps to handle IMM sign positions (0=positive, 1=negative), and without parsing to ensure that a field does not contain non-numeric characters (e.g., "/").

In a delimited format, a universal missing value (e.g., –9999.99) could be selected outside the range of all data (except possibly for alphanumeric fields). In contrast, the fixed-field IMMA format contains different field-widths so a single numeric value is unworkable. A convention such as all nines filling each indicated field width also is impractical, e.g., because many of the 1-character fields have extant numeric values covering the range 0-9.

Therefore, blanks are used in IMMA as the universal representation for missing data. However, it is important to note that Fortran for example considers blanks (by default) to be equivalent to zero, thus to ensure correctness the processing must first parse a field as characters to ensure that it is not entirely blank. Machine-transportable Fortran software to help read (and optionally write) the IMMA data ("rwimma1") is available (http://icoads.noaa.gov/software/).

Field configurations for proposed IMMA attms (e.g., for the historical attm) are undecided, and will benefit from future feedback and discussion (including possible alternative implementation options noted as part of the background information for some fields). In other cases, existing (originally LMR-based) configurations have been utilized. These

² As an exception, the (obsolete) NCDC-variant record uses leading zeros in fields *MO*, *DY*, and *HR*. Additional differences between the NCDC-variant record and the ICOADS-standard record are described in Supp. E.

provisional configurations are outlined in Supp. F and may warrant modification or expansion after international consideration.

Core (C0)

Location section

<u>1) YR</u> 2) MO	<u>year UTC</u> (four digits) <u>month UTC</u> (1=January, 2=February,, 12=December)
<u>3) DY</u>	<u>day UTC</u> (1-31)
<u>4) HR</u>	hour UTC $(0.00 \text{ to } 23.99)^3$
	Background: As for IMMT-5 except <i>HR</i> . In the NCDC-variant record, no longer produced (as well as in IMMT-5), MO, DY, and HR will include leading zero-fill, as applicable (e.g., 01=January). VOS data typically are reported to nearest whole hour, but the extended resolution is needed, e.g., for storage of drifting buoy data. For VOS data, WMO (2015) Reg. 12.1.6 states: "The actual time of observation shall be the time at which the barometer is read."

5) LAT latitude

6) LON longitude

Position to hundredths of a degree +N or –S (measured north or south of the equator) and +E or –W (measured east or west of the Greenwich Meridian). The longitude range (–179.99° to 359.99°) specified in Supp. C (Table C0) encompasses two distinct longitude conventions: 0° to 359.99° (i.e., 0°E, 0.01°E, ..., 359.98°E, 359.99°E; ICOADS convention) and –179.99° to 180.00° (i.e., 179.99°W, 179.98°W, ..., 179.99°E, 180.00°E; NCDC-variant convention, now obsolete).

Background: The two longitude conventions are desirable for different applications and archival requirements. However, 0° to 359.99° is generally recommended, because it is the simplest formulation and thus helps reduce the likelihood of location errors. Extended resolutions are needed in comparison to the IMMT-5 format, e.g., for drifting buoy data. Disallowing 360.00 and -180.00° ensures that meridians are uniquely represented within the convention range (i.e., avoiding: 0°/360.00°; 180.00°/-180.00°). However, even if IMMA records are stored in a mixture of these conventions, all longitude values can be accurately interpreted because the overall range for longitude reserves negative for the western hemisphere. Organizing YR, MO, DY, HR, LAT, and LON in sequence can facilitate synoptic sort operations. Characters (N, S, E, W) could alternatively have been used in place of sign for both LAT and LON, but this complicates computer processing and therefore was deemed not advisable, as was usage of conventions for quadrant (WMO Code 3333 as used in IMMT-5) or octant numbers (WMO 2015 notes under Code 3333 how the choice of quadrant is left to the observer under specific circumstances such as along the Equator).

7) IM IMMA version

0 – version 0 (2010, <u>http://icoads.noaa.gov/e-doc/imma/R2.5-imma.pdf</u>) 1 – version 1 (the current version, 2016, this document)

- 2 version 2
- etc.

³ Throughout Supp. D, floating-point ranges, if applicable, are provided as values would appear after applying the units scaling from the appropriate table in Supp. C to the integer values stored in the IMMA format.

8) ATTC attm count

ATTC provides the attm count:

- 0 abbreviated record (no attm)
- 1 one attm
- 2 two attms

etc.

Background: *IM* and *ATTC* are positioned near the front of the record to allow computerized input and interpretation (e.g., of different IMMA versions), but after *LON* so as not to interfere with sort operations. The configuration of *IM* is similar to the IMMT-5 field "IMMT version" with a valid range 0-99. For IMMA1, the range of *ATTC* is extended to 10 and the representation is now base36.

9) TI time indicator

10) LI latitude/longitude indicator

TI preserves the incoming precision of time fields:

- 0 nearest whole hour
- 1 hour to tenths
- 2 hour plus minutes
- 3 high resolution (e.g., hour to hundredths)

LI preserves the precision at which *LAT* and *LON* were recorded or translated from, or if they were derived later by interpolation between known positions:

- 0 degrees and tenths
- 1 whole degrees
- 2 mixed precision
- 3 interpolated
- 4 degrees and minutes
- 5 high resolution data (e.g., degrees to seconds)

6 – other

Background: *TI* and *LI* match original LMR configurations, except that *LI*=2 was described there as "nonrandom tenths" (a type of mixed precision; see *Release 1*, supp. F). [Note: No indication is available in *TI* for quasi-instantaneous vs. time-period averaged data (e.g., daily averages from PMEL deck 145).]

11) DS ship course

12) VS ship speed

WMO Code 0700 for true direction of resultant displacement of the ship during the three hours preceding the time of observation (i.e., ship's course (true) made good):

() – stationary	(ship hove to)	5 – SW

1 – NE	6 – W
2 – E	7 – NW
3 – SE	8 – N
4 – S	9 – unknown

WMO Code 4451 for ship's average speed made good during the three hours preceding the time of observation (beginning 1 January 1968):

0 – 0 knots 5 – 21-25 knots 1 – 1-5 knots 6 – 26-30 knots 2 – 6-10 knots 7 – 31-35 knots 3 – 11-15 knots 8 – 36-40 knots 4 – 16-20 knots 9 – over 40 knots

Prior to 1 January 1968 a different code for VS, also with range 0-9, applied (Met Office 1948):

0 – 0 knots 5 – 13-15 knots

- 1 1-3 knots 6 16-18 knots
- 2 4-6 knots 7 19-21 knots
- 3 7-9 knots 8 22-24 knots
- 4 10-12 knots 9 over 24 knots

Background: As was originally the case in LMR, both the old and new VS codes are stored in the same field, to be differentiated by date (but *DS* and *VS* were named *SC* and *SS* in LMR). In IMMPC format documentation, Code 4451 may have been used to refer to both the old and new VS codes. Further research is needed to clarify the timing and details of that apparent code change.

13) NID national source indicator

A field available for national use in identifying data subsets.

Background: IMMT has a similar 1-character field for "national use" (see Supp. B, Table B2), which thus far has not been translated into this (or another) IMMA field. *NID* was set to "1" by the Data Assembly Center (DAC; at NOAA/NCEI) for identified VOSClim ships, or to missing otherwise. [Note: Presently in R3.0 not all VOSClim ships were identified in all data sources, such that this indicator was set only sporadically. R3.0 VOSClim data obtained in the ICOADS-standard format should be identifiable by *NID*=1.]

14) *II* ID indicator

15) *ID* identification/callsign

II indicates whether a callsign or some other sort of identification is contained in the *ID* field (and in R3.0 data, *II* should always be extant when *ID* information exists; whereas *II* should always be missing if *ID* is missing):

- 0 ID present, but unknown type
- 1 ship, Ocean Station Vessel (OSV), or ice station callsign
- 2 generic ID (e.g., SHIP, BUOY, RIGG, PLAT)
- 3 WMO 5-digit buoy number
- 4 other buoy number (e.g., Argos or national buoy number)

5 – Coastal-Marine Automated Network (C-MAN) ID (assigned by US NDBC or other organizations)

- 6 station name or number
- 7 oceanographic platform/cruise number
- 8 fishing vessel psuedo-ID
- 9 national ship number
- 10 composite information from early ship data
- 11 7-digit buoy ID (proposed)

Background: *ID* is extended to nine characters (versus e.g., seven in IMMT-5). In platform track checking, for example, consideration should be given to using a combination of *II* and *ID*, since identical *ID*s can sometimes have different *II* values and thus may represent different platforms. [Note: ICOADS processing normally left-justifies extant information stored within *ID* (with right blank-fill). GTS reports generally contain a radio callsign or WMO buoy identification number (http://www.wmo.int/pages/prog/amp/mmop/wmo-number-rules.html), but early IMM logbook reports sometimes contained IDs such as national ship numbers and "log" numbers (see Table B4). Documentation of the format of such numbers generally appears to be unavailable (but could potentially be sought from individual countries), thus *II*=9 has generally been assigned only for earlier (pre-IMM) card decks for which the format of the information was known.] *II*=11 is listed as proposed since new 7-digit buoy IDs exist, but are not presently marked as such in R3.0 of ICOADS. Future expansion of the list of *II* values is likely with the advent of new WMO identifiers (e.g., WIGOS).

16) C1 country code

The country that recruited a ship, which may differ from the country of immediate receipt (*C2*, field 15) and may also differ from the ship's registry. WMO transitioned from the older numeric code values 0-40 (Table D1) to the current 2-character ISO 3166 (http://www.iso.org/iso/country_codes.htm) alphabetic codes effective 1 Jan. 1998.

Background: Both the older numeric codes for historical data, and the alphabetic codes for more recent data, are stored in this field (since e.g., the old numeric codes include the USSR and other former country names). [Note: The older numeric codes were "according to numbers assigned by WMO" (see IMMT-1 documentation in WMO 1993a). Some deficiencies in NCDC's processing many years ago of early IMM receipts, involving missing country codes and card "overpunch" handling, are discussed in the LMR documentation (http://icoads.noaa.gov/e-doc/Imr).]

Table D1. WMO numeric country codes (now obsolete).	Table D1. W	/MO numeric (country codes ((now obsolete).
---	-------------	---------------	-----------------	-----------------

1 0010		10 000		0000101			
<u>C1</u>	<u>Country</u>	<u>C1</u>	<u>Country</u>	<u>C1</u>	<u>Country</u>	<u>C1</u>	<u>Country</u>
0	Netherlands	10	Ireland	20	Sweden	30	Spain
1	Norway	11	Philippines	21	FRG	31	Thailand
2	US	12	Egypt	22	Iceland	32	Yugoslavia
3	UK	13	Canada	23	Israel	33	Poland
4	France	14	Belgium	24	Malaysia	34	Brazil
5	Denmark	15	South Africa	25	USSR	35	Singapore
6	Italy	16	Australia	26	Finland	36	Kenya
7	India	17	Japan	27	Rep. of Korea	37	Tanzania
8	Hong Kong	18	Pakistan	28	New Caledonia	38	Uganda
9	New Zealand	19	Argentina	29	Portugal	39	Mexico
			-		-	40	GDR

Regular section

17) DI wind direction indicator

18) *D* wind direction

DI gives the compass (and approximate precision) used for reporting the wind direction:

- 0 36-point compass
- 1-32-point compass
- 2-16 of 36-point compass
- 3 16 of 32-point compass
- 4 8-point compass
- 5 360-point compass
- 6 high resolution data (e.g., tenths of degrees)

D is the direction (true) from which wind is blowing (or will blow), stored in whole degrees (i.e., 360-point compass; range: 1-360°), or special codes:

- 361 calm
- 362 variable, or all directions

Table D2 lists the standard mappings used in ICOADS of contemporary (WMO Code 0877) and historical ship wind direction codes into degrees.

Background: IMMT-5 follows WMO Code 0877 (including 00 for calm, and 99 for variable). In FM 13, stations within 1° of the North Pole instead use Code 0878 (WMO 2015). In designing D to store both high- and low-resolution directions, an unambiguous and numerically closed range (i.e., 1-362, rather than e.g., 0-360, 999=variable) was deemed advantageous for computational reasons (e.g., range checking).

Table D2. Translation of contemporary (DI=0; WMO Code 0877) and some historical (shaded) ship wind direction codes (DI=1-3 as represented in NCDC 1968) into degrees (blank indicates an undefined conversion) for storage of wind direction in *D. Release 1*, supp. F provides the original rationale for the degree values shown in this table and further background information (including uncertainties associated with past usage of DI=4 in ICOADS, see Table F2-1 in http://icoads.noaa.gov/Release 1/suppF.html).

http://icoads.noa		_I/Suppr.nun	<u>.</u>).			
WMO Cod				<u>DI</u>		
Code	Range	0	1	2	3	4
01	5-14	10	11			?
02	15-24	20	23	25	23	?
03	25-34	30	34			?
04	35-44	40	45		45	?
05	45-54	50	56	45		?
06	55-64	60	68		68	?
07	65-74	70	79	65		? ? ?
08	75-84	80	90		90	?
09	85-94	90	101	90		
10	95-104	100	113		113	
11	105-114	110	124	115		
12	115-124	120	135		135	
13	125-134	130	146			
14	135-144	140	158	135	158	
15	145-154	150	169			
16	155-164	160	180	155	180	
17	165-174	170	191			
18	175-184	180	203	180	203	
19	185-194	190	214			
20	195-204	200	225	205	225	
21	205-214	210	236			
22	215-224	220	248		248	
23	225-234	230	259	225		
24	235-244	240	270		270	
25	245-254	250	281	245		
26	255-264	260	293		293	
27	265-274	270	304	270		
28	275-284	280	315		315	
29	285-294	290	326	295		
30	295-304	300	338		338	
31	305-314	310	349			
32	315-324	320	360	315	360	
33	325-334	330				
34	335-344	340		335		
35	345-354	350				
36	355-4	360		360		
00 (calm)		361	361	361	361	
99 (variable)		362	362	362	362	

19) WI wind speed indicator

20) W wind speed

Wind speed is stored in tenths of a meter per second (to retain adequate precision for winds converted from knots, or high-resolution data). W shows the units in which and/or the method by which W was originally recorded (0, 1, 3, 4 follow WMO Code 1855):

0 - meter per second, estimated

- 1 meter per second, obtained from anemometer (measured)
- 2 estimated (original units unknown)
- 3 knot, estimated
- 4 knot, obtained from anemometer (measured)
- 5 Beaufort force (based on documentation)
- 6 estimated (original units unknown)/unknown method
- 7 measured (original units unknown)
- 8 high-resolution measurement (e.g., hundredths of a meter per second)
 - Background: No indication is given as to the incoming units and precision of W, e.g., whole knots. For reports derived from e.g., TDF-11 format (NCDC 1968), the meaning of WI=6 either is "estimated (units unknown)," or "both method and units unknown" (i.e., the indicator was missing). This unfortunate ambiguity derives from the dual meaning present in some original archive formats, including IMMPC (ref. Supp. B). [Note: In earlier ICOADS processing, WI=2 and WI=7 were used for reconversion of deck 555 from the original "SPOT" format; however, no missing value was available in the SPOT format, thus both those WI settings should be interpreted with caution.]

21) VI visibility indicator

22) VV visibility

VV (horizontal visibility at the surface in kilometers) according to WMO Code 4377 from which, in reporting visibility at sea, WMO (2009a; Reg. 12.2.1.3.2) states that the decile 90-99 shall be used (moreover Reg. 12.2.1.3.1: when the horizontal visibility is not the same in different directions, the shortest distance shall be given for VV):

- 90 less than 0.05 kilometer
- 91 0.05
- 92 0.2
- 93 0.5
- 94 1
- 95 2
- 96 4
- 97 10
- 98 20
- 99 50 or more

VI shows whether VV was:

- 0 estimated (or unknown method of observation)
- 1 measured
- 2 fog present (obsolete)

Background: The "Ćloud height and visibility measuring indicator" from IMMT-5 is separated into independent indicators in IMMA format, HI (see field 39) and VI. [Note: When VI=2, and VV=93, it meant that fog was present and visibility was not reported (NCDC 1968). This "fog present" combination of VI=2 with VV=93 appears to originate from "overpunch" procedures that took effect in the IMMPC format around 1966 (see Table B2) as translated into the TDF-11 format.]

23) WW present weather

24) W1 past weather

WMO Codes 4677 (Table D3) for WW, and 4561 for W1:

0 -Cloud covering 1/2 or less of the sky throughout the appropriate period

1 -Cloud covering more than 1/2 of the sky during part of the appropriate period and covering 1/2 or less during part of the period

2 – Cloud covering more than 1/2 of the sky throughout the appropriate period

- 3 Sandstorm, duststorm or blowing snow
- 4 Fog or ice fog or thick haze
- 5 Drizzle
- 6 Rain
- 7 Snow, or rain and snow mixed
- 8 Shower(s)
- 9 Thunderstorm(s) with or without precipitation

For use of weather data starting 1 Jan. 1982, also refer to IX (C5, field 7).

Background: WMO Code 4561 also applies to W2 (C5, field 8). WMO Codes 4680 (W_aW_a) and 4531 (W_{a1}/W_{a2}) (not shown) are used instead for reporting present and past weather from an automatic weather station (see WMO 2015). Those alternative Codes have the same numerical ranges as WW (00-99) and W1/W2 (0-9) but different meanings, and *IX* must be used to determine which codes are being utilized.

Table D3. WMO Code 4677 for present weather (*WW*) (after WMO 2015). Leading zero is omitted in IMMA. Large multi-line braces ("{" and "}") as appear in WMO (2009a) are reproduced in this table by denoting the code groups to which text characteristics given in the first column (e.g., "No meteors except photometeors") or last column apply by listing the codes in square [brackets] (e.g., "[00-03]").

	Code							
WW = 00	-49	No precipitation at the station at the time of observation						
<i>WW</i> = 00-19		No precipitation, fog, ice fog (except for 11 and 12), duststorm, sandstorm, drifting or						
		blowing snow at the station ¹ at the time of observation or, except for 09 and 17, during						
	_	the preceding hour						
	Code							
No	00	Cloud development not observed or not observable						
meteors except	01	Clouds generally dissolving or becoming less	[00-03] Characteristic change					
photo-		developed	of the state of sky during the					
meteors	02	State of sky on the whole unchanged	past hour					
[00-03]	03	Clouds generally forming or developing						
	04	Visibility reduced by smoke, e.g., veldt or forest fires,						
		industrial smoke or volcanic ashes						
	05	Haze						
	06	Widespread dust in suspension in the air, not raised						
		by wind at or near the station at the time of observation						
Haze,	07	Dust or sand raised by wind at or near the station at						
dust,		the time of observation, but no well-developed dust						
sand or		whirl(s) or sand whirl(s), and no duststorm or						
smoke		sandstorm seen; or, in the case of ships, blowing						
[04-09]	08	spray at the station						
	08	Well-developed dust whirl(s) or sand whirl(s) seen at						
		or near the station during the preceding hour or at the time of observation, but no duststorm or sandstorm						
	09	Duststorm or sandstorm within sight at the time of						
	09	observation, or at the station during the preceding						
		hour						
	10	Mist						
	11	Patches	[11-12] shallow fog or ice fog					
	12	More or less continuous	at the station, whether on land					
			or sea, not deeper than about					
			2 meters on land or 10 meters					
			at sea					
	13	Lightning visible, no thunder heard						
	14	Precipitation within sight, not reaching the ground or						
		the surface of the sea						

	Code		
	15	Precipitation within sight, reaching the ground or the	
		surface of the sea, but distant, i.e., estimated to be	
		more than 5 km from the station	
	16	Precipitation within sight, reaching the ground or the	
		surface of the sea, near to, but not at the station	
	17	Thunderstorm, but no precipitation at the time of	
		observation	
	18	Squalls	[18-19] at or within sight of the
	19	Funnel cloud(s) ²	station during the preceding
			hour or at the time of
<i>WW</i> = 20		Dresisitation for ice for an thunderstorm at the static	observation
VVVV = 20)-29	Precipitation, fog, ice fog or thunderstorm at the statio not at the time of observation	n during the preceding nour but
	20	Drizzle (not freezing) or snow grains	
	21	Rain (not freezing)	
	22	Snow	[20-24] not falling as shower(s)
	23	Rain and snow or ice pellets	
	23	Freezing drizzle or freezing rain	
	25	Shower(s) of rain	
	26	Shower(s) of rain Shower show of rain and show	
	27	Shower(s) of hail ³ , or of rain and hail ³	
	28	Fog or ice fog	
	29	Thunderstorm (with or without precipitation)	
WW = 30	-	Duststorm, sandstorm, drifting or blowing snow	
	30	Slight or moderate duststorm or sandstorm – has decre	eased during the preceding hour
	31	Slight or moderate duststorm or sandstorm – no a	
		preceding hour	approximate entenige seeming and
	31	Slight or moderate duststorm or sandstorm – has beg	un or has increased during the
	-	preceding hour	3
	33	Severe duststorm or sandstorm - has decreased durin	g the preceding hour
	34	Severe duststorm or sandstorm – no appreciable chan	ge during the preceding hour
	35	Severe duststorm or sandstorm – has begun or has incr	eased during the preceding hour
	36	Slight or moderate drifting snow	[36-37] generally low (below
	37	Heavy drifting snow	eye level)
	38	Slight or moderate blowing snow	[38-39] generally high (above
	39	Heavy blowing snow	eye level)
WW = 40		Fog or ice fog at the time of observation	
	40	Fog or ice fog at a distance at the time of observation,	
		but not at the station during the preceding hour, the	
		fog or ice fog extending to a level above that of the	
	11	observer	
	41 42	Fog or ice fog in patches	[42 42] has become thisses
	42 43	Fog or ice fog, sky visible	[42-43] has become thinner during the preceding hour
	43	Fog or ice fog, sky invisible Fog or ice fog, sky visible	[44-45] no appreciable change
	44 45	Fog or ice fog, sky visible	during the preceding hour
	45 46	Fog or ice fog, sky visible	[46-47] has begun or has
	46 47	Fog or ice fog, sky visible	become thicker during the
	+1	I US UT DE TUS, SKY ITVISIDIE	preceding hour
	48	Fog, depositing rime, sky visible	
	49	Fog, depositing rime, sky invisible	
WW = 50		Precipitation at the station at the time of observation	
WW = 50		Drizzle	
	50	Drizzle, not freezing, intermittent	[50-51] slight at time of
	51	Drizzle, not freezing, continuous	observation
	52	Drizzle, not freezing, intermittent	[52-53] moderate at time of
	53	Drizzle, not freezing, continuous	observation
	54	Drizzle, not freezing, intermittent	[54-55] heavy (dense) at time
	55	Drizzle, not freezing, continuous	of observation
		-,	

	Code		
	56	Drizzle, freezing, slight	
	57	Drizzle, freezing, moderate or heavy (dense)	
	58	Drizzle and rain, slight	
	59	Drizzle and rain, moderate or heavy	
WW = 60	-69	Rain	
	60	Rain, not freezing, intermittent	[60-61] slight at time of
	61	Rain, not freezing, continuous	observation
	62	Rain, not freezing, intermittent	[62-63] moderate at time of
	63	Rain, not freezing, continuous	observation
	64	Rain, not freezing, intermittent	[64-65] heavy (dense) at time
	65	Rain, not freezing, continuous	of observation
	66	Rain, freezing, slight	
	67	Rain, freezing, moderate or heavy	
	68	Rain or drizzle and snow, slight	
	69	Rain or drizzle and snow, moderate or heavy	
WW = 70	-79	Solid precipitation not in showers	
	70	Intermittent fall of snowflakes	[70-71] slight at time of
	71	Continuous fall of snowflakes	observation
	72	Intermittent fall of snowflakes	[72-73] moderate at time of
	73	Continuous fall of snowflakes	observation
	74	Intermittent fall of snowflakes	[74-75] heavy (dense) at time
	75	Continuous fall of snowflakes	of observation
	76	Diamond dust (with or without fog)	
	77	Snow grains (with or without fog)	
	78	Isolated star-like snow crystals (with or without fog)	
	79	Ice pellets	
<i>WW</i> = 80		Showery precipitation, or precipitation with current or re	ecent thunderstorm
	80	Rain shower(s), slight	
	81	Rain shower(s), moderate or heavy	
	82	Rain shower(s), violent	
	83	Shower(s) of rain and snow mixed, slight	
	84	Shower(s) of rain and snow mixed, moderate or heavy	
	85	Snow shower(s), slight	
	86	Snow shower(s), slight	
	87	Shower(s) of snow pellets or small hail, with or –	Slight
	07	without rain or rain and snow mixed	Clight
	88	Shower(s) of snow pellets or small hail, with or -	Heavy
	00	without rain or rain and snow mixed	licavy
	89	Shower(s) of hail ⁴ , with or without rain or rain and	Slight
	00	snow mixed, not associated with thunder	Chight
	90	Shower(s) of hail ⁴ , with or without rain or rain and	Heavy
		snow mixed, not associated with thunder	
	91	Slight rain at time of observation	
	92	Moderate or heavy rain at time of observation	
	93	Slight snow, or rain and snow mixed or hail ³ at time of	[91-94] Thunderstorm during
	~~	observation	the preceding hour but not at
	94	Moderate or heavy snow, or rain and snow mixed or	time of observation
		hail ³ at time of observation	
	95	Thunderstorm, slight or moderate, without hail ³ ,	
		but with rain and/or snow at time of observation	
	96	Thunderstorm, slight or moderate, with hail ³ at time of	
	50	observation	
	97	Thunderstorm, heavy, without hail ³ , but with rain	[95-99] Thunderstorm at time
	51	and/or snow at time of observation	of observation
	98	Thunderstorm combined with duststorm or sandstorm	
	50	at time of observation	
	99	Thunderstorm, heavy, with hail ³ at time of observation	
		the station" refers to a land station or a ship.	L

The expression "at the station" refers to a land station or a ship.
Tornado cloud or water-spout.

3. Hail, small hail, snow pellets. French: grêle, grésil ou neige roulée.

4. French: grêle.

25) SLP sea level pressure

26) A barometric tendency

27) PPP amount of pressure tendency

SLP and *PPP* (amount of pressure tendency at station level during the three hours preceding the time of observation) in tenths of hPa (i.e., millibars), and A according to WMO Code 0200 (Table D4).

Background: IMMT-5 contains a 4-character (PPPP) representation of *SLP* in (dropping the leading digit). WMO (2009a) Reg. 12.1.3.7, Note (3) describes how for auxiliary ships *SLP* (similarly to *AT*, as discussed below) still may be reported to whole hPa (using the solidus "/" for the tenths position, which was probably generally set to zero in translated GTS data, with a resulting loss of precision information).

Table D4. WMO Code 0200 for characteristic of pressure tendency during the three hours preceding the time of observation (*A*) (after WMO 2015).

p								
<u>Code</u>	Definition	Additional definition related to codes in brackets [].						
0	Increasing, then decreasing; atmospheric pressure the same or higher than three hours ago							
1	Increasing, then steady; or increasing, then increasing more slowly	[1.2] Atmospheric processes pour						
2	Increasing (steadily or unsteadily) ¹	[1-3] Atmospheric pressure now higher than three hours ago						
3	Decreasing or steady, then increasing; or increasing, then increasing more rapidly	nigher than three hours ago						
4	Steady; atmospheric pressure the same as three hours ago ¹							
5	Decreasing, then increasing; atmospheric pressure the same or lower than three hours ago							
6	Decreasing, then steady; or decreasing, then decreasing more slowly	IC 91 Atmospheric produte pow						
7	Decreasing (steadily or unsteadily) ¹	[6-8] Atmospheric pressure now lower than three hours ago						
8	Steady or increasing, then decreasing; or decreasing, then decreasing more rapidly	I lower than thee hours ago						

1. For reports from automatic stations, see Reg. 12.2.3.5.3.

29) AT air temperature (i.e., dry bulb)

- 30) WBTI WBT indicator
- 31) *WBT* wet-bulb temperature
- 32) DPTI DPT indicator
- 33) DPT dew-point temperature
- 34) SI SST method indicator

35) SST sea surface temperature

Temperatures are stored in tenths of a degree Celsius.

IT provides information about the precision and/or units that the *Core* temperature elements were translated from:

0 – tenths °C

1 – half °C

2 – whole °C

- 3 whole or tenths °C (mixed precision among temperature fields)
- 4 tenths °F
- 5 half °F
- 6 whole °F
- 7 whole or tenths °F (mixed precision among temperature fields)
- 8 high resolution data (e.g., hundredths °C)
- 9 other

Background: For *IT*, 0-2 match ir=3-5 in IMMT-5; the full configuration matches predecessor field *T1* in LMR. Early historical temperatures may have also been reported in degrees Réaumur, mixed units, etc.; additional fields may be desirable in the historical attm to record such details. WMO (2009a) Reg. 12.1.3.7, Note (3) describes how for auxiliary ships *AT* (similarly to *SLP*, as discussed above) still may be reported to whole degrees (using the solidus "/" for the tenths position, which was probably generally set to zero in translated GTS data, with a resulting loss of precision information). Only starting in 1982 could *DPT* be reported to tenths in the SHIP code, and only starting 2 Nov. 1994 did it become possible to report *WBT* (to tenths) in FM 13.

WBTI and *DPTI* indicate which of *WBT* or *DPT* was measured or computed, and ice bulb conditions:

- 0 measured
- 1 computed
- 2 iced measured
- 3 iced computed

Background: *WBTI* and *DPTI* are derived from sign positions s_w and s_t in IMMT-5. [Note: For data originally translated into LMR from IMMT formats, the predecessor LMR field *T2* preserved only a subset of information derived from s_w and s_t , coupled with whether *DPT* was computed during ICOADS processing. Future work should seek to recover more complete information for data that were translated to IMMA from LMR, and consider new configurations to separately document ICOADS processing. WMO (2009a) Reg. 12.2.3.3.1 specifies when (e.g., owing to instrument failure) relative humidity (RH) is available and may be reported in FM 13 instead of *DPT* in an alternative group 29UUU. For R3.0, we are now translating more *RH* data into the IMMA1 *Immt* attm, both from modern GTS and IMMT sources.]

SI shows the method by which *SST* was taken:

- 0 bucket
- 1 condenser inlet (intake)
- 2 trailing thermistor
- 3 hull contact sensor
- 4 through hull sensor
- 5 radiation thermometer
- 6 bait tanks thermometer
- 7 others
- 9 unknown or non-bucket
- 10 "implied" bucket [note: applicable to early ICOADS data]
- 11 reversing thermometer or mechanical sensor
- 12 electronic sensor

Background: 0-7 follow the IMMT-5 code. Except for omitting SI=8 ("unknown"), this is a direct mapping from the LMR configuration. SI values should be used with extreme caution in earlier data (see discussion of "bucket indicators" in sec. 4 of *Release 1*). [Note: In translation from LMR, SI=8 was made missing (SI=8 indicated that no information was available; it resulted from a conversion error applicable only to decks 705-707). For data translated from IMM formats effective

since 1982, *SI*=7 refers to "other than 0-6," because the only other extant values were 0-6. For FM 13 data reported since 2 Nov. 1994 (when *SI* information first became available on GTS), in contrast, *SI*=7 refers to "other than 0-1 or 3," because the only other extant values were equivalent to 0-1 or 3. *SI*=9 arose because a distinct missing value was not available in some earlier IMM and archive formats, e.g., in NCDC (1968) a blank in the SST indicator field for deck 128 meant "determined by other than bucket method," but blank also generally signified a missing field in that format.]

36) N total cloud amount (cover)

37) *NH* lower cloud amount

For *N*, codes 0 to 9 (WMO Code 2700) show the total fraction of the celestial dome covered by clouds (irrespective of their genus). For *NH* (also WMO Code 2700) they show the amount of all the low (*CL*) cloud present or, if no *CL* cloud is present, the amount of all the middle (*CM*) cloud present:

- 0 clear
- 1 1 okta or less, but not zero
- 2-6 2-6 oktas
- 7 7 oktas or more, but not 8 oktas
- 8 8 oktas
- 9 sky obscured by fog and/or other meteorological phenomena

Background: In WMO 2015 (WMO Code 2700), *N* is termed "total cloud cover." This description adopts the current WMO Code 2700 definition of code 9, which in LMR was defined as "sky obscured or cloud amount cannot be estimated" (as in Met Office 1948). The solidus ("/") is defined as a further possibility in WMO Code 2700 as "Cloud cover is indiscernible for reasons other than fog or other meteorological phenomena, or observation is not made," which should have been translated into missing data in IMMA. [Note: Historically "/" was omitted e.g., from Met Office 1948 and NCDC 1968, and thus also not included in *Release 1* or current LMR configurations for *N* and *NH*. In contrast *CL*, *H*, *CM*, and *CH* have always had an ICOADS configuration ("A" in IMMA) corresponding to "/" separate from missing data (see also background notes following *CH*, field 42).]

38) CL low cloud type

Codes 0 to 10 [A in base36 encoding] show characteristics observed of clouds of the genera Stratocumulus, Stratus, Cumulus, and Cumulonimbus (WMO Code 0513; see also background notes following *CH*, field 42).

39) HI cloud height indicator

HI shows if cloud height H was:

- 0 estimated
- 1 measured

Background: The "Cloud height and visibility measuring indicator" from IMMT-5 is separated into independent indicators in IMMA format, *HI* and *VI* (see field 21).

40) H cloud height

Codes 0 to 9 and "A" (following WMO Code 1600) show the height above surface of the base of the lowest cloud seen (such that a height exactly equal to one of the values at the ends of the ranges shall be coded in the higher range, e.g., a height of 600 m shall be reported by code 5):

0 - 0 to 50 m 1 - 50 to 100 m 2 - 100 to 200 m 3 - 200 to 300 m 4 - 300 to 600 m

- 5 600 to 1000 m
- 6 1000 to 1500 m
- 7 1500 to 2000 m
- 8 2000 to 2500 m
- 9 2500 m or more, or no clouds

10 [A in base36 encoding] – height of base of cloud not known or base of clouds at a level lower and tops at a level higher than that of the station

Background: Further notes regarding WMO Code 1600 (WMO 2015) concern *H* data reported from automatic stations.

41) CM middle cloud type

Codes 0 to 10 [A in base36 encoding] show characteristics observed of clouds of the genera Altocumulus, Altostratus, and Nimbostratus (WMO Code 0515).

42) CH high cloud type

Codes 0 to 10 [Å in base36 encoding] show characteristics observed of clouds of the genera Cirrus, Cirrocumulus and Cirrostratus (WMO Code 0509).

Background: Configurations for *CL*, *H*, *CM*, and *CH* are as in IMMT-5, except for use of "A" (10 in base36) in place of "/" (LMR used 10 in place of "/"). Analyses of cloud types may be impacted by a 1 Jan. 1982 GTS code change: When *N*=0, the types *CM*, *CH*, and *CL* were reported as missing (i.e., the FM 13 8NhC_LC_MC_H group was omitted), whereas previously these types may have been reported zero (see Hahn et al. 1992). However, to improve climatological data quality, starting 2 Nov. 1994 FM 13 was again modified so that all cloud observations at sea including no cloud observation shall be reported (see WMO 2015, Reg. 12.2.7.1). [Note: For historical reasons (see background under *NH*, field 37), an inconsistency exists in IMMA in how solidus ("/") is translated for *N* and *NH* (i.e., to missing data) versus for *CL*, *H*, *CM*, and *CH* (i.e., to "A"). A related complication (i.e., in terms of preserving information about whether data were explicitly reported as "/" versus omitted from transmission) is that group Nddff in FM 13 is mandatory, whereas 8NhC_LC_MC_H can be omitted (Reg. 12.2.7.1).]

43) WD wave direction

Starting in 1968, *WD* was no longer reported in the SHIP code. Codes 00 to 36 (note: leading zero is omitted in IMMA) show the direction (if any) from which (wind) waves come, in tens of degrees (following WMO Code 0877; ref. Code and Range columns in Table D2). Codes 37 and 38 show:

37 – waves confused, direction indeterminate ($WH \le 4.75$ m)

38 - waves confused, direction indeterminate (*WH* > 4.75 m; or irrespective of wave height, corresponding to 99 in WMO Code 0877)

44) WP wave period

Period of wind waves, in seconds. Starting in 1968, *WP* was reported in seconds; prior to 1968 the period was reported as a code, which was converted into whole seconds following Table D5a, with *WX* (*C1*, field 13) set accordingly.

45) WH wave height

Height of wind waves, in units of 0.5 m (i.e., 1=0.5 m, 2=1 m, etc.).

Background: Historically, the (wind) wave and swell codes have been subject to complex changes. Prior to 1949 both sets of fields were apparently reported descriptively in the SHIP code, and thus are expected to be missing (and the swell fields are expected to be missing prior to 1 July 1963, as discussed below). Codes 37-38 arise from earlier historical codes (see Met Office 1948). Starting in 1968, *WD* was no longer reported and *WP* was reported in seconds. [Note: *WP*=99, indicating a confused sea, is defined in IMMA, but not in use in R3.0. Future work should seek to recover confused sea information from original formats. Some NDBC wave data currently are transformed for storage in Table C5 fields

(potentially inappropriate). Specifically, ICOADS contains increasing amounts of measured wave data from NOAA National Data Buoy Center (NDBC) moored buoys in the vicinity of the US coastline. These variables, in the NCDC (2003) TD-1171 format (<u>ftp://ftp.ncdc.noaa.gov/pub/data/documentlibrary/tddoc/td1171.pdf</u>, Note: no longer produced, since NDBC and NCEI have adopted a netCDF format going forward from ~2012), have been translated into IMMA variables (with a loss of data resolution, at least in the case of *WD*, which is represented in degrees in TD-1171 (e.g., 0-360) as compared to coded units of ten degrees in IMMA, e.g., 0-36):

WD = principal wave direction (pos. 84-86 in TD-1171)

WH = significant wave height (pos. 75-77 in TD-1171)

WP = dominant wave period (pos. 78-80 in TD-1171)]

46) SD swell direction

47) SP swell period

48) SH swell height

Configurations similar to the corresponding wave fields *WD*, *WP*, and *WH*. Prior to 1968 (1968-1982), *SP* was reported as a code, which was converted into whole seconds per Table D5a (Table D5b), with *SX* (*C1*, field 14) set accordingly.

Background: Beginning 1 July 1963 both sea (i.e., wind wave) and swell were reported. Prior to that date only the higher of sea and swell was reported. Starting in 1982, *SP* was reported in seconds.

Seconds	Code	Interval
5	2	5 seconds or less
7	3	6-7 seconds
9	4	8-9 seconds
11	5	10-11 seconds
13	6	12-13 seconds
15	7	14-15 seconds
17	8	16-17 seconds
19	9	18-19 seconds
21	0	20-21 seconds
22	1	over 21 seconds
0	_	calm or period not determined

Table D5b. Conversion for *SP* beginning 1 January 1968 and ending in 1982.

<u>Seconds</u>	<u>Code</u>	<u>Interval</u>		
10	0	10 seconds		
11	1	11 seconds		
12	2	12 seconds		
13	3	13 seconds		
14	4	14 seconds or more		
5	5	5 seconds or less		
6	6	6 seconds		
7	7	7 seconds		
8	8	8 seconds		
9	9	9 seconds		
0	_	calm or period not determ	nined	

ICOADS (Icoads) attm (C1)

<u>1) ATTI attm ID</u>

2) ATTL attm length

Each attm begins with ATTI and ATTL. ATTI identifies the attm contents with a numeric identifier (ATTI=1 for Icoads), and ATTL provides the total length of the attm (including ATTI and ATTL) in bytes.

Box elements

3) BSI box system indicator

4) *B10* 10° box number

5) *B1* 1° box number

10° and 1° box numbers (see *Release* 1, supp. G; <u>http://icoads.noaa.gov/Release_1/suppG.html</u>) are available e.g., for use in sorting operations. The box system indicator is currently unused.

Background: *BSI* provides flexibility in case other box requirements arise (i.e., future extant values of *BSI* could indicate different contents in *B10* and *B1*). *Release 1*, supp. G also describes the obsolete Marsden Square (MSQ) system.

Processing elements

6) DCK deck

Number of the deck from which the report came (Table D6a), with Tables D6b and D6c providing additional information about selected *DCK* ranges. "Deck" originally referred to a punched card deck, but is now used as the primary field to track ICOADS data collections. Each deck may contain a single Source ID (*SID*) or a mixture of *SIDs* (see C1, field 7 for additional information about the relationship between these two fields, and with the format of supplemental data).

Table D6a. Deck assignments (adapted regarding R2.5 from Table All in Woodruff et al. 2011). For each deck number, the description, starting and ending years, and number of reports (in thousands) are listed for R2.5 and R3.0 output (blanks in these columns indicate that no data were input and/or output¹). Decks replaced or augmented in R3.0, are listed in **bold**. ICOADS also offers preliminary data (now based on a blend of decks 792-797 and 992-995) extending beyond 2014, but not reflected in the last three columns.

		R2.5					
Deck	Description	Start	End	Rpts K	Start	End	Rpts K
110	US Navy Marine	1945	1951	633	1945	1951	633
116	US Merchant Marine	1945	1963	6 866	1945	1963	6 860
117	US Navy Hourlies	1952	1964	11	1950	1964	2 535
118	Japanese Ships No. 1 (Kobe Collection Data keyed in 1961)	1930	1953	1 727	1930	1953	1 727
119	Japanese Ships No. 2 (Kobe Collection Data keyed in 1961)	1951	1961	904	1951	1961	904
128	International Marine (US- or foreign-keyed ship data)	1950	1978	14 537	1950	1978	14 440
143	Pacific Marine Environmental Laboratory (PMEL) Buoys	1976	1977	13	1976	1977	13

TAO/TRITON and PIRATA Buoys (from PMEL & JAMSTEC) ²	1985	2004	7 192	1985	2004	496
PMEL (Daily) Equatorial Moorings and Island	1979	1991	17			
Global Tropical Moored Buoy Array (GTMBA) from				1977	2014	13 852
Pacific (US Responsibility)	1939	1961	85	1939	1961	85
Pacific (US Responsibility)	1862	1960	206	1862	1960	206
Pacific (US Responsibility)	1855	1961	15	1855	1961	15
Indian (Netherlands	1861	1960	1 068	1861	1960	1 068
Atlantic (German	1852	1961	5 564	1852	1961	5 564
Great Britain Marine (194	1953	1961	344	1953	1961	344
	1957	1958	111	1957	1958	111
						20
						10
Norwegian Antarctic	1932	1939	2	1932	1939	2
	1939	1959	232	1939	1959	232
						5 941
						6 276
						457
						598
Deutsche Seewarte Marine	1949	1954	143	1949	1954	143
Danish (and Other) Marine	1871	1956	23	1871	1956	23
UK Met. Office (MetO) Main	1854	1994	15 212	1699	1944	18 003
US Navy Monthly	1926	1945	187	1926	1945	187
Gulf Offshore Weather Observing Network (GOWON) (plat data)						
US Navy Fleet Num. Met. and Oceano. Center (FNMOC; Monterey) Telecom.	1966	1973	2 213	1926	1945	187
Tuna Boats	1970	1975	17	1970	1975	17
Inter-American Tropical Tuna Commission (IATTC)	1971	1997	1 148	1971	1997	1 148
UK Met. Office GTS BUFR Data	2003	2007	10	2000	2012	13 402
US Maury Collection	1784	1863	1 346	1784	1863	1 345
Norwegian Logbook Collection	1867	1889	201	1784	1863	1784
US Lightship Collections				1931	1980	201
US Marine Meteorological Journals Collection (1878- 94)	1878	1894	1 761	1878	1894	1 761
US Merchant Marine Collection (1912-46) (500 series)	1910	1946	1 014	1910	1946	1 014
	Buoys (from PMEL & JAMSTEC) ² PMEL (Daily) Equatorial Moorings and Island Stations ² Global Tropical Moored Buoy Array (GTMBA) from PMEL via NOC Pacific (US Responsibility) HSST Netherlands Receipts Pacific (US Responsibility) HSST German Receipts Pacific (US Responsibility) HSST UK Receipts Indian (Netherlands Responsibility) HSST Atlantic (German Responsibility) HSST Great Britain Marine (194 extension) USSR Marine IGY USSR Ice Stations Japanese Whaling Fleet Norwegian Antarctic Whaling Factory Ships Netherlands Marine Deutsche Seewarte Marine Great Britain Marine US Navy Ships Logs Deutsche Seewarte Marine (192 extension) Danish (and Other) Marine (192 extension) Danish (and Other) Marine (Polar) UK Met. Office (MetO) Main Marine Data Bank (MDB) US Navy Fleet Num. Met. and Oceano. Center (FNMOC; Monterey) Telecom. Tuna Boats Inter-American Tropical Tuna Commission (IATTC) UK Met. Office GTS BUFR Data US Maury Collection Norwegian Logbook Collection (1878- 94) US Marine Meteorological Journals Collection (1878- 94) US Merchant Marine Collection (1912-46) (500	Buoys (from PMEL & JAMSTEC)21985PMEL (Daily) Equatorial Moorings and Island1979Stations2Global Tropical Moored Buoy Array (GTMBA) from PMEL via NOC1939Pacific (US Responsibility) HSST Netherlands Receipts1862Pacific (US Responsibility) HSST German Receipts1862Pacific (US Responsibility) HSST UK Receipts1861Indian (Netherlands Responsibility) HSST1861Atlantic (German Responsibility) HSST1852Great Britain Marine (194 extension)1953USSR Marine IGY1957USSR Ice Stations1950Japanese Whaling Fleet1946Norwegian Antarctic Whaling Factory Ships1939Deutsche Seewarte Marine1855Netherlands Marine1839Deutsche Seewarte Marine1856US Navy Ships Logs1941Deutsche Seewarte Marine (192 extension)1871UK Met. Office (MetO) Main Marine Data Bank (MDB)1854US Navy Monthly Aerological Record (MAR)1926Gulf Offshore Weather (Doserving Network (GOWON) (plat data)1970UK Met. Office GTS BUFR Data2003US Maury Collection1784Norwegian Logbook Collection1867US Marine Meteorological Journals Collection (1878- 94)1878US Merchant Marine Collection (1912-46) (5001910	Buoys (from PMEL & JAMSTEC)219852004PMEL (Daily) Equatorial Moorings and Island19791991Stations219791991Global Tropical Moored Buoy Array (GTMBA) from PMEL via NOC19391961Pacific (US Responsibility) HSST German Receipts18621960Pacific (US Responsibility) HSST German Receipts18621960Pacific (US Responsibility) HSST German Receipts18611960Pacific (US Responsibility) HSST German Receipts18611960Atlantic (German Responsibility) HSST18521961USSR Marine IGY19531961USSR Ice Stations19501970Japanese Whaling Fleet19461956Norwegian Antarctic Whaling Factory Ships19321939Netherlands Marine18551939Netherlands Marine18551939Netherlands Marine18551939Netherlands Marine18561955US Navy Ships Logs19411946Deutsche Seewarte Marine (192 extension)18541994UK Met. Office (MetO) Main Marine Data Bank (MDB)18541994US Navy Fleet Num. Met. and Oceano. Center (FNMOC; Monterey)19761973Tuna Boats197019751973Inter-American Tropical US Maury Collection17841863Norwegian Logbook collection (1878- 94)18671889US Maury Collection17841863Norwegian Logbook collection (19	Buoys (from PMEL & JAMSTEC) ² 1985 2004 7 192 JAMSTEC) ² PMEL (Daily) Equatorial Moorings and Island 1979 1991 17 Stations ² Global Tropical Moored Buoy Array (GTMBA) from PMEL via NOC 1939 1961 85 Pacific (US Responsibility) HSST Netherlands Receipts 1862 1960 206 Pacific (US Responsibility) HSST German Receipts 1861 1960 1068 Atlantic (German Responsibility) HSST 1861 1960 1 068 Atlantic (German Responsibility) HSST 1861 1961 344 USSR Marine IGY 1953 1961 344 USSR loc Stations 1950 1970 20 Japanese Whaling Fleet 1946 1956 10 Norwegian Antarctic 1939 1959 232 Deutsche Seewarte Marine 1855 1939 5 944 Netherlands Marine 1800 1938 6 276 Great Britain Marine 1855 1939 5 944 Netherlands Marine 1949 1954 143	Buoys (from PMEL & JAMSTEC) ² 1985 2004 7 192 1985 PMEL (Daily) Equatorial Moorings and Island Stations ² 1979 1991 17 Global Tropical Moored Buoy Array (GTMBA) from PMEL via NOC 1939 1961 85 1939 Pacific (US Responsibility) HSST Netherlands Receipts 1862 1960 206 1862 Pacific (US Responsibility) HSST German Receipts 1861 1960 1068 1861 Pacific (US Responsibility) HSST German Receipts 1861 1960 1068 1861 Responsibility) HSST 1851 1961 5 564 1852 Indian (Netherlands Responsibility) HSST 1852 1961 3 44 1953 USSR Marine IGY 1957 1958 111 1957 USSR Marine IGY 1957 1958 111 1957 USSR Marine IGY 1932 1939 2 1930 Damese Whaling Fleet 1946 1956 10 1946 Norwegian Antarcic 1939 5 944 1855 1830 5 944	Buoys (from PMEL & JAMSTEC) ² 1985 2004 7 192 1985 2004 MASTEC) ² PMEL (Cally) Equatorial Moorings and Island 1979 1991 17 2014 Buoy Array (GTMBA) from PMEL via NOC 1939 1961 85 1939 1961 Pacific (US Responsibility) HSST Netherlands Receipts 1862 1960 206 1862 1960 Pacific (US Responsibility) HSST (Metherlands Receipts 1861 1960 1 068 1861 1960 Pacific (US Responsibility) HSST (Metherlands Responsibility) HSST 1861 1960 1 068 1861 1960 Atlantic (German Responsibility) HSST 1861 1960 1 068 1861 1960 USSR Restations 1957 1958 111 1957 1958 USSR Restations 1950 1970 20 1950 1970 Japanese Whaling Fleet 1946 1956 10 1946 1956 Norwegian Antarctic 1933 1959 232 1939 1939 Netherlands Marin

							1
706	US Merchant Marine Collection (1912-46) (600 series)	1910	1944	2 062	1910	1944	2 062
707	US Merchant Marine Collection (1912-46) (700 series)	1913	1941	425	1913	1941	425
708	US Navy Marine (US- keyed ship data; hourly METAR format)				2001	2012	387
709	US Navy Marine (IMMA formatted by US Navy)				2004	2006	8
710	US Arctic Logbooks (OldWeather)				1870	1946	165
711	Weather Detective Crowdsourcing				1889	1899	36
714	Canadian Oceanography and Scientific Data (OSD; formerly ISDM/MEDS) Buoys	1978	2007	57 274	1978	2014	132 741
715	German Deep Drifter Data (via OSD; originally from IfM/Univ. Kiel)	1980	1996	1 031			
720	Deutscher Wetterdienst (DWD) Marine Met. Archive	1876	1914	976	1868	1988	2 100
721	German Maury Collection				1845	1868	538
730	Climatological Database for the World's Oceans (CLIWOC)	1662	1855	261	1662	1855	261
731	Russian S.O. Makarov Collection	1804	1891	3	1662	1855	261
732	Russian Marine Met. Data Set (MORMET) (rec'd at NCAR)	1888	1995	7 873	1888	1995	7 527
733	Russian AARI North Pole (NP) Stations	1937	1991	98	1937	1991	98
734	Arctic Drift Stations	1893	1924	12	1893	1924	13
735	Russian Research Vessel (R/V) Digitization	1936	2000	1 789	1936	2000	1 789
736	Byrd Antarctic Expedition (keyed by Hollings Scholars)	1929	1934	1	1929	1934	1
740	Research Vessel (R/V) Data Quality-Evaluated by FSU/COAPS	1990	1998	56	1990	2014	771
749	First GARP Global Experiment (FGGE) Level IIb	1978	1979	6	1978	1979	6
750	Australian Navy Vessels: SST Data (1972-77)				1974	1977	4
761	Japanese Whaling Ship Data (CDMP/MIT digitization)	1946	1984	20	1946	1984	20
762	Japanese Kobe Collection Data (keyed after decks 118-119)	1889	1940	3 135	1889	1940	3 135
780	NOAA/NCEI World Ocean Database (WOD) (and formerly Atlas, WOA)	1800	2015	15 200	1770	2014	12 000

781	Chinese/Global Ocean						
/01	Data Archeology and				1968	1993	382
	Rescue (GODAR) Ships				1300	1995	502
782	Global Ocean Surface						
	Underway Data (GOSUD)				1980	2014	1 578
792	US Natl. Cntrs. for						
	Environ. Pred. (NCEP)	1998	2007	5 889	1998	2014	1 351
	BUFR GTS: Ship Data						
793	NCEP BUFR GTS: Buoy						
	Data (transmitted in FM 13	1998	2007	10 545	1998	2014	21 876
70.4	"SHIP" code)						
794	NCEP BUFR GTS: Buoy Data (transmitted in FM 18	1998	2007	1 950	1998	2014	2 800
	"BUOY" code)	1990	2007	1 950	1990	2014	2 800
795	NCEP BUFR GTS:						
	Coastal-Marine Automated	0005	0007	1.050			0 700
	Network (C-MAN code)	2005	2007	4 056	2008	2014	6 768
	Data						
796	NCEP BUFR GTS:						
	Miscellaneous (OSV, plat,						
707	and rig) Data						
797	NCEP BUFR GTS: CREX code				2008	2014	2 824
849	First GARP Global						
043	Experiment (FGGE)	1978	1979	250	1978	1979	250
850	German FGGE	1978	1979	146	1978	1979	146
874	Shipboard Environmental						
	(Data) Acquisition System	1991	2007	504	1995	2014	67
	(SEAS)						
875	US TurboWin (e-Logbook)				0040		
	Voluntary Observing Ship (VOS) Receipts				2012	2014	2
876-	US National Data Buoy						
882 ⁴	Center (NDBC) Data	1972	1979	315	1972	1979	315
883 ⁴	US National Data Buoy	4000					40 - 00
	Center (NDBC) Data	1980	2004	20 538	1980	2012	49 763
888	US Air Force Global	1973	1997	5 993	1973	1997	5 987
	Weather Central (GWC)	1973	1997	5 993	1973	1997	5 967
889	Autodin (US Dept. of						
	Defense Automated Digital	1972	1995	1 039	1972	1995	1 038
	Network)						
890	US National Met. Center						
	(NMC, now NCEP) Data (obsolete)						
891	US National Oceanographic						
	Data Center (NODC)						
	Surface Data						
892	US Natl. Centers for						
	Environmental Pred.	1980	1997	9 209	1980	1997	9 190
	(NCEP) Ship Data						
893	NCEP Moored Buoy Data	1986	1997	2 225	1986	1997	2 225
894	NCEP Drifting Buoy Data						
895	NCEP Coastal-Marine						
	Automated Network (C-						
896	MAN) Data NCEP Miscellaneous (OSV,						
030	plat, and rig) Data	1980	1997	575	1980	1997	575
897	Eltanin	1962	1963	1	1962	1963	1
898	Japanese	1954	1974	121	1954	1974	121
899	South African Whaling	1900	1955	64	1900	1955	64

901	FOSDIC Reconstructions						
	(card images from 16mm film)	1868	1963	7	1931	1979	386
902	Great Britain Marine (184 extension)	1957	1961	99	1957	1961	99
926	International Maritime Meteorological (IMM) Data	1954	2007	25 372	1954	2014	30 612
927	International Marine (US-						
	or foreign-keyed ship data) ⁵	1970	2007	11 138	1970	2012	11 160
928	Same as 927 including Ocean Station Vessels	1970	1974	4	1970	1974	4
	(OSV)		-			-	
992	NCEI GTS: Ship Data				1999	2014	14 231
993	NCEI GTS: Buoy Data (transmitted in FM 13				1999	2014	8 019
994	"SHIP" code) NCEI GTS: Buoy Data (transmitted in FM 18 "BUOY" code)				1999	2014	1 428
995	NCEI GTS: Coastal-Marine Automated Network (C- MAN code) Data				1999	2014	16 054
996	NCEI GTS: Miscellaneous (OSV, plat, and rig) Data						
997	NCEI GTS: CREX code						
999	US Air Force Environ. Technical Applications Center (ETAC)	1967	1969	37	1967	1969	37

1. Some of these decks (ref. <u>http://icoads.noaa.gov/e-doc/Imr</u>) were used in ICOADS prior to R3.0; others have not been used (e.g. deck 500 was input for Release 1a, but not output). LMR documentation also defined for real-time data processing unofficial deck numbers 001-009, which have not actually been used for ICOADS.

2. Deck 145 contains daily-averaged data, and up to the early 1990's TAO deck 144 contains average estimates for 2-8 hours depending on the buoy instrument package and power requirements.

3. See Table D6b.

4. See Table D6c.

5. A mixture of US- and foreign-keyed data exists in deck 927 prior to 1980; starting about 1980 deck 927 is believed to contain only US-keyed ships.

Table D6b. UK Met. Office (MetO) Main Marine Data Bank (MDB) deck assignments (equivalent to MDB "series" numbers). For each deck number, the description, starting and ending years, and number of reports (in thousands) are listed for R2.5 and R3.0 output (blanks in the last three columns indicate that no data were input and/or output). Decks entirely new to (or replaced in) R3.0, are listed in **bold**. Assignments falling in the range 201-255 not listed below (217, 219-220, etc.) are not yet assigned. Approximate time periods are also given in the description column from earlier MDB or other external documentation.

		R2.5		R3.0			
Deck	Description	Start	End	Rpts K	Start	End	Rpts K
201	All Ships (1930 code) (1850-1920)	1854	1956	1 403	1854	1956	1 403
202	All Ships (1921 code) (1921-29)	1915	1938	1 170	1915	1938	1 170
203	Selected Ships (1930 code) (1920-39)	1929	1961	416	1929	1961	416
204	British Navy (HM) Ships (1930 code) (1930-48)	1929	1949	115	1929	1949	115
205	Scottish Fishery Cruisers MARIDS (1930 code) (1946-56)	1945	1956	17	1945	1956	17

		-	-			-	
206	Ocean Weather Stations (OWS) (1930 code) (1947-49)	1947	1948	2	1947	1948	2
207	Selected Ships (1930 code) (1945-48)	1945	1953	390	1945	1953	390
208	Light Vessels (1949-56)						
209	Selected Ships (including some foreign ships) (1951-56)	1951	1956	458	1951	1956	458
210	OWS (including Dutch "J") (1950-56)	1950	1956	4	1950	1956	4
211	Scottish Fishery Cruisers MARIDS (1956- 61)	1956	1961	41	1956	1961	41
212	Light Vessels (1956-61)						
213	Selected Ships (1956-61)	1953	1962	1 133	1953	1962	1 133
214	OWS (1956-61)	1956	1961	8	1956	1961	8
215	German Marine (1860-1938) ¹	1860	1940	802	1860	1940	802
216	UK Merchant Ship Logbooks (METFORMS; keyed in 1996) (1935-39)	1935	1939	457	1935	1939	457
218	US OWS (1953-)	1953	1963	9	1953	1963	8
221	MARIDS and Trawlers (1961-)	1962	1988	60	1962	1988	60
222	Light Vessels (1961-)						
223	Selected Ships (1961-81)	1962	1982	416	1962	1982	416
224	OWS (1961-81)	1976	1981	2	1976	1981	2
225	Norwegian Format (1953-)						
226	OWS (1949 code) (1949-52)	1949	1952	3	1949	1952	3
227	Selected Ships (1949-53)	1947	1954	479	1947	1954	479
229	British Navy (HM) Ships (1961-)	1953	1981	50	1953	1981	50
230	Int. Maritime Met. Punched Card (IMMPC) Data (1960-81)	1962	1971	1 102	1962	1971	1 102
233	Selected Ships (1982-)	1982	1994	48	1982	1994	48
234	OWS (1982-)	1982	1994	1	1982	1994	1
235	RIGG, PLAT, Automatic Weather- Observing System (AWS; buoy) (1982-)						
239	British Navy (HM) Ships (1982-)	1953	1993	42	1953	1993	42
241	MetO GTS Receipts (primarily SHIP code; from MDB format) ²						
242	MetO GTS Receipts (SHIP code; raw messages from MetDb) ³						
245	Royal Navy Ship's Logs (keyed by 2007) (1938-47)	1936	1955	1 423	1936	1955	1 423
246	Atmospheric Circ. Reconstructions over the Earth (ACRE) Digitized Data: Print./Published Expeditions (held at Met. Office)				1699	1940	128
247	ACRE Digitized Data: Challenger Expedition				1872	1876	16
248	English East India Co. (EEIC) Ship Logs				1789	1834	247
249	Extended WW1 UK Royal Navy Ship's Logs (OldWeather)				1912	1925	983
254	Int. Maritime Met. (IMM) Data (foreign or unknown origin)	1860	1994	6 561	1860	1994	6 556
255	Undocumented TDF-11 Decks or MDB Series	1857	1994	23	1857	1994	23
	red to be derived from the same original Gern		le a al la a male	a a a al a al a	400 /	T-LL D	0 -1

Believed to be derived from the same original German punched cards as deck 192 (see Table D6a).
Jan 1982-26 Jun 1998 (missing: Apr-Jun 82; Mar, Jun, Sep 85; Sep 88). Some non-SHIP (e.g., BUOY) data may also be included in earlier years.
21 Dec 1996-23 Feb 1998.

Table D6c. Deck assignments for early US National Data Buoy Center (NDBC) data (decks 876-882), and the latest version from NCDC of NDBC data (deck 883). For each deck number, the description, starting and ending years, and number of reports (in thousands) are listed for R2.5 and R3.0 output (blanks in the last three columns indicate that no data were input and/or output¹).Initially, separate deck numbers 876-880 were assigned to indicate hull design, etc.¹ At a later date, this convention was abandoned, such that decks 882 and 883 were used for all data.

			R2.5			R3.0		
Deck	Description	Start	End	Rpts K	Start	End	Rpts K	
876	NDBC Data (High Capability Buoy; HCB)	1972	1977	36	1972	1977	36	
877	NDBC Data (Limited Capability Buoy; LCB)	1973	1976	5	1973	1976	5	
878	NDBC Data (Prototype Environmental Buoy; PEB)	1974	1978	43	1974	1978	43	
879	NDBC Data (5-meter Continental Shelf Buoys)	1974	1978	46	1974	1978	46	
880	NDBC Data (10-meter Continental Shelf Buoys)	1976	1978	8	1976	1978	8	
881	NDBC Data (Offshore Platforms)	1976	1977	1	1976	1977	1	
882	NDBC Data	1978	1979	175	1978	1979	175	
883	NDBC Data (latest version from NCDC)	1980	2004	20 538	1980	2012	49 763	

1. Hull design information is based on informal NCDC documentation (NCDC 1972a and 1972b) and D. Gilhousen (NDBC) personal correspondence (13 Dec. 1995).

7) SID source ID

Number of the source ID from which the report came (Table D7). Each *SID* may contain a single deck or a mixture of decks, but each *SID* is generally constrained to a single input format. This helps to identify the format of data stored in the supplemental attachment. However, exceptions include UK Marine Data Bank (MDB) data, for which both *DCK* (201-255) and *SID* (90-93) may be required to determine the supplemental format.

Table D7. Source ID (*SID*) assignments (adapted in part from Table AIII in Woodruff et al. 2011). For each *SID* number, the description, starting and ending years, and number of reports (in thousands, where "<1" signifies a report count falling in the range 1-499) are listed for R2.5 and R3.0 output (blanks in the last three columns indicate that no data were input and/or output¹). *SIDs* entirely new to (or replaced in) R3.0, are listed in **bold**. ICOADS also offers preliminary data (presently based on a blend of *SIDs* 103 and 114) extending beyond 2014, but not reflected in the last three columns.

			R2.5				
SID	Description	Start	End	Rpts K	Start	End	Rpts K
0	[reserved]						
1	Atlas	1800	1969	32 713	1800	1969	32 651
2	HSST Pacific	1855	1961	405	1855	1961	404
3	HSST Indian	1861	1960	1 068	1861	1960	1 068
4	HSST Atlantic	1852	1961	5 564	1852	1961	5 564
5	Old TDF-11 Supplement B	1854	1975	2 694	1854	1975	2 652
6	Old TDF-11 Supplement C	1855	1978	2 625	1855	1978	2 625
7	Monterey Telecommunications	1966	1969	661	1966	1969	661
8	Ocean Station Vessels (OSV)	1945	1973	822	1945	1973	819
9	OSV Supplement	1947	1973	57	1947	1973	49
10	MSQ 486 and 105 Omissions	1854	1968	172	1854	1968	171

11	US National Oceanographic Data Center						
12	(NODC) Surface US NODC Surface Supplement						
		1060	1062	1	1060	1062	1
13 14		1962 1954	1963 1974	1 121	1962 1954	1963 1974	1 121
14	Japanese South African Whaling	1954	1974	64	1954	1974	64
16	Australian	1900	1955	192	1900	1955	192
10	International Maritime Meteorological (IMM)	1931	1970	192	1931	1970	192
17	Data	1956	1979	224	1956	1979	224
18	'70s Decade	1970	1979	12 183	1970	1979	12 163
19	IMM '70s	1978	1979	<1	1978	1979	<1
20	OSV Z ('70s)	1970	1974	1	1970	1974	1
21	Australian ('70s)	1971	1979	194	1971	1979	194
22 ²	NCDC: 1980-84 Annual Receipts	1982	1987	135	1982	1987	135
23	'70s Mislocated Data	1973	1979	2	1973	1979	2
24	Buoy Data	1972	1979	192	1972	1979	192
25- 28 ³	NCDC: 1980-85 Annual Receipts	1962	1985	1 534	1962	1985	1 534
29	NCDC: US Nat. Met. Center (NMC, now NCEP) Reconversion (1980-92)	1980	1992	8 201	1980	1992	8 189
30	NCDC: 1980-84 Period of Record	1965	1984	4 192	1965	1984	4 185
31	Corrected Canadian Data						
32- 33 ³	NCDC: Annual Receipts (and duplicates; starting in 1986)	1974	1997	4 440	1974	1997	4 435
34- 45 ³	NCDC: 1986-97 Receipts (delayed)	1969	1996	1 251	1969	1996	1 251
46- 47 ³	International Maritime Met. (IMM) Tape Archive (1982-)	1969	1995	7 117	1969	1995	7 116
48	NODC/OCL 1994 World Ocean Atlas (WOA94; Mar. 93 NODC archive data)						
49	NODC/OCL 1994 World Ocean Atlas (WOA94; non-NODC archive)						
50	US National Data Buoy Center (NDBC) Data	1980	1997	12 770	1980	1997	12 770
51- 52 ³	Russian AARI North Pole (NP) Stations	1937	1991	98	1937	1991	98
53	First GARP Global Experiment (FGGE) Level IIb: Surface Marine Data	1978	1979	6	1978	1979	6
54	FGGE Level IIb: Oceanographic Data						
55	FGGE Level IIb: Drifting Buoy Data						
56	Russian S.O. Makarov Collection	1804	1891	3	1804	1891	3
57	Russian Marine Meteorological Data Set (MORMET) (rec'd at NCAR)	1888	1993	7 873	1888	1993	7 527
58	French International Maritime Met. (IMM) Uncorrected (1954-88)						
59	UK IMM Corrections (1982-89)	1982	1989	1 552	1982	1989	1 552
60	French International Maritime Met. (IMM) Corrected	1954	1988	159	1954	1988	159
61	Canadian Oceanography and Scientific Data (OSD; formerly ISDM/MEDS) Buoys						
62	OSD (formerly ISDM/MEDS) World Ocean Circulation Experiment (WOCE) Buoys						
63	Canadian OSD (formerly ISDM/MEDS) Buoys (July 2005 archive extended by Dec. 2008, & by May 2015 for 2008-14)	1978	2007	57 274	1978	2014	132 741

			1			1	
64	Russian Research Vessel (R/V) Digitization: Marine Surface	1936	2000	1 153	1936	2000	1 153
65	Russian Research Vessel (R/V) Digitization: Marine Actinometric	1947	2000	637	1947	2000	637
66	Pacific Marine Environmental Lab. (PMEL) TOGA/TAO Buoys	1985	1992	236	1985	1992	188
67	PMEL (Daily) Equatorial Moorings and Island Stations	1979	1991	17			
68	Arctic Drift Stations	1893	1924	12	1893	1924	12
69	US Maury Collection	1784	1863	1 346	1784	1863	1 345
70	Inter-American Tropical Tuna Comm. (IATTC) Porpoise Obs. Logs	1979	1997	736	1979	1997	736
71	IATTC Fishing Logs	1971	1997	413	1971	1997	413
72	IMM Tape Archive from WMO Global Collecting Centre (GCC) (1994 format)	1982	1997	3 808	1982	1997	3 808
73	NCDC Marine Obs. Processing System (MOPS): Pre-MOPS (TD-9973)						
74	NCDC MOPS: Duplicate File (TD-9974)						
75	NCDC MOPS: Original Observations (TD- 9980)						
76	NCDC MOPS: Supplementary or Correction Data						
77	NCDC: US National Cntrs. for Environ. Pred. (NCEP) Reconversion (1994-97)	1994	1997	2 609	1994	1997	2 605
78	NCDC: US-keyed Logbook Data Reconversion (TD-9972; keyed during 1996- 97)	1987	1997	307	1987	1997	307
79	US Air Force Global Weather Central (GWC): DATSAV2 format	1980	1997	1 469	1980	1997	1 465
80	US Navy FNMOC Monterey Telecom: NCAR: Kunia (OPCON) format						
81	US Navy FNMOC Monterey Telecom: NCAR: NEDN format						
82	US Navy FNMOC Monterey Telecom: NCAR: Surface Ship (SPOT) format						
83	US Navy FNMOC Monterey Telecom: NCDC: Surface Ship (SPOT) format (TD-9769)						
84	US Merchant Marine Collection (1912-46): Full QC	1910	1944	1 927	1910	1944	1 927
85	US Merchant Marine Collection (1912-46): Partial QC	1910	1946	1 246	1910	1946	1 246
86	Pacific Marine Environ. Lab. (PMEL) TOGA/TAO Buoys: RAM Data						
87	Pacific Marine Environ. Lab. (PMEL) TOGA/TAO Buoys: SPOT Data						
88	NODC/OCL 1998 World Ocean Database (WOD98; Mar. 94 NODC archive data)						
89	NODC/OCL 1998 World Ocean Database (WOD98; non-NODC archive)						
90	UK Met. Ofc. (MetO) Main Marine Data Bank (MDB): Flatfile 1 (no cardimage)	1856	1994	9 272	1856	1994	9 267
91	MetO MDB: Flatfile 1A (Flatfile plus cardimage data)	1854	1979	5 413	1854	1979	5 413
92	MetO MDB: Flatfile 1B (no Flatfile match; data derived from cardimage)	1855	1978	69	1855	1978	68
93	MetO Historical Metforms (1935-39): Flatfile 1C (data from cardimage)	1935	1939	457	1935	1939	457
94	MetO GTS Receipts (primarily SHIP code; from MDB format)						

95	Japanese Kobe Collection Data (IMMT	1889	1940	3 135	1889	1940	3 135
	format; 2003 Edition)	1867			1867	1889	
96	Norwegian Logbook Collection Japanese Kobe Collection Data (IMMT	1007	1889	201	1007	1009	201
97	format; 1998 Edition)						
98	US Merchant Marine Collection (1912-46): Full QC (CLICOM system)	1914	1944	328	1914	1944	328
99	Japanese Kobe Collection Data (IMMT format; 2001 Edition)						
100	NCEP BUFR GTS: Operational Tanks: Converted from Original Message	1998	1999	2 198	1998	1999	1 706
101	NCEP BUFR GTS: Operational Tanks: Converted from BUFR						
102	NCEP BUFR GTS: Dumped Data: Converted from Original Message						
103	NCEP BUFR GTS: Dumped Data: Converted from BUFR	1999	2007	20 241	1999	2014	33 912
104- 108	[reserved]						
109	US Navy Marine (US-keyed ship data; hourly METAR format)				2001	2012	387
110	UK Met. Office VOSClim GTS BUFR Data	2003	2007	10	2000	2010	10 593
111	Shipboard Environmental (Data) Acquisition System (SEAS)	1991	2007	438			
112	IMM Tape Archive from WMO GCC (IMMT- 2 or IMMT-3 format)	1982	2007	7 990	1982	2014	13 238
113	International Marine (US-keyed ship data)	1992	2007	533	1992	2012	575
114	NCEI GTS				1999	2014	39 823
115	Japanese Whaling Ship Data (CDMP digitization)	1946	1984	20	1946	1984	20
116	Japanese Whaling Ship Data (MIT digitization)	1951	1976	<1	1951	1976	<1
117	PMEL TAO/TRITON and PIRATA Research Archive Hourly Average Data	1990	2001	3 394	1990	2001	3
118	PMEL TAO/TRITON and PIRATA Research Archive 10-Minute Average Data	1996	2004	2 746	1997	2004	5
119	JAMSTEC TRITON Hourly Average Data	1998	2004	595	1998	2004	299
120	PMEL TAO/TRITON and PIRATA Research Archive Hourly Average SLP Data	2000	2004	222	2001	2004	<1
121	US National Data Buoy Center (NDBC) Data (obtained from NCDC 2005-2012)	1998	2004	7 768	1998	2012	13 085
122	US NDBC data (NODC f291 archive version translated by NCDC 2008)				1980	2008	23 908
123	[reserved]						
124	Climatological Database for the World's Oceans (CLIWOC; Release 2.0)						
125	US Marine Meteorological Journals Collection	1878	1894	1 761	1878	1894	1 761
126	Royal Navy Ship's Logs (keyed by 2007)	1936	1955	1 423	1936	1955	1 423
127	Antarctic Expeditions: Print./Published (held at Met Office)	1898	1940	35	1898	1940	25
128	North Polar Expedition of the Fram (digitized by Environment Canada				1898	1902	1
129	Byrd Antarctic Expedition (keyed by Hollings Scholars)	1929	1934	1	1929	1934	1
130	Research Vessel (R/V) Data Quality- Evaluated by FSU/COAPS: WOCE ver.3.0	1990	1998	56	1990	1998	56

131	Research Vessel (R/V) Data Quality-				2005	2014	714
	Evaluated by FSU/COAPS: SAMOS Research Vessel (R/V) Data Quality-						
132	Evaluated by FSU/COAPS: Other						
	Climatological Database for the World's						
133	Oceans (CLIWOC; Release 2.1, limited edition)	1662	1855	261	1662	1855	261
40.4	Deutscher Wetterdienst (DWD) Marine	4004	1011	500	400.4	4044	500
134	Meteorological Archive: Compo Subset	1884	1914	580	1884	1914	580
135	DWD Marine Meteorological Archive: Newly	1876	1902	395	1876	1902	395
	Digitized Data DWD Marine Meteorological Archive:						
136	HISTOR Data	1882	1899	<1	1882	1899	<1
137	NODC/OCL 2005 World Ocean Database	1772	2005	7 738			
	(WOD05) updated through 13 Dec. 2007				4070	4070	40
138	ACRE Data: <i>Challenger</i> Expedition German Deep Drifter Data (via OSD;	1872	1876	16	1872	1876	16
139	originally from IfM/Univ. Kiel)	1980	1996	1 031			
140	US Navy Hourlies: Deck 117 in TD-1100				1950	1964	15
140	format				1330	1304	15
141	US Navy Hourlies: Original card deck 117 format (from FOSDIC)				1951	1964	3
142	US Navy Hourlies: Original card deck 117				1951	1964	2 516
142	format (from NCEI DSI-1117)		-		1951	1304	2 310
143	Chinese/Global Ocean Data Archeology and Rescue (GODAR) Ships				1968	1993	382
444	US Lightship Collection: Woods Hole				4024	4000	204
144	Oceanographic Institution				1931	1980	201
145 ⁴	US Lightship Collection: National Archives and Records Admin.						
	UK Met. Office & NOC: VOSClim-compliant						
146	GTS BUFR Data: Historical ship/buoy (FM				2010	2012	1 938
147	UK Met. Office & NOC: VOSClim-compliant GTS BUFR Data: Historical buoy (FM 18)				2000	2012	871
148	English East India Co. (EEIC) Ship Logs				1789	1834	247
140	(containing instrumental data)				1/09	1034	
149	NOAA/NCEI 2013 World Ocean Database (WOD13) updated through 24-02-2015				1770	2014	11 974
	Shipboard Environmental (Data)						574
150	Acquisition System (SEAS9.1): IMMT-5				2013	2014	<1
	format US TurboWin (TurboWin 5.0) (e-Logbook)						
151	VOS Receipts: IMMT-4 format				2012	2014	2
152	German Maury Collection				1845	1868	538
156	Australian Navy Vessels: SST Data (1972-				1974	1977	4
	77) US Navy Marine (IMMA formatted by US						
157	US Navy Marine (IMMA formatted by US Navy)				2004	2006	8
158	US TurboWin+ (e-logbook) VOS Receipts:				2014	2014	<1
130	IMMT-5				2014	2014	
159	Global Ocean Surface Underway Data (GOSUD v2) from NCEI in WOD format				1980	2013	539
155	received 19 May 2015				1300	2013	
160	DWD Marine Meteorological Archive:				1868	1907	167
100	HISTOR Data (receipts in 2015)						
161	DWD German Light Vessels (receipts in 2014)				1929	1988	925
160	GOSUD v3 real-time data from NCEI in				2014	2014	10
162	WOD format received 30 April 2015				2014	2014	10

163	GOSUD v3 near real-time data from NCEI in WOD format received 30 April 2015	2000	2014	838
164	GOSUD delayed-mode French research vessels and sailing ship data from NCEI in WOD format received 30 April 2015	2001	2014	191
165	World War I (WW1) UK Royal Navy Logbooks (OldWeather) (1914-23) (Accessed 29 May 2015)	1912	1925	983
166	US Navy Arctic Logbooks (OldWeather) (Accessed 29 May 2015)	1870	1946	165
167	ACRE Historical Digitised (expeditionary and other spreadsheets) - Translated by UK Met Office	1699	1930	98
168	ACRE Historical Digitised (expeditionary and other spreadsheets) - Translated by NCEI	1816	1872	5
169	Global Tropical Moored Buoy Array (GTMBA) from PMEL via NOC RT	1998	2014	1 990
170	Global Tropical Moored Buoy Array (GTMBA) from PMEL via NOC DM	1977	2014	11 862
171	Australian Abstract Logs (Wragge Collection) from Weather Detective Crowdsourcing (Accessed 29 May 2015)	1889	1899	36

1. Some of these SIDs (ref. <u>http://icoads.noaa.gov/e-doc/Imr</u>) were used in ICOADS prior to R2.5; others have not been used.

2. Originally SID 22 was assigned to *Islas Orcadas* (see *Release 1*, supp. F), but the data were never translated.

3. LMR documentation provides a breakdown of descriptions for *SID* range.

4. Tentative source ID assignment—data are not yet available.

8) PT platform type

The type of observing platform:

- 0 US Navy or "deck" log, or unknown
- 1 merchant ship or foreign military
- 2 ocean station vessel—off station or station proximity unknown
- 3 ocean station vessel—on station
- 4 lightship
- 5 ship
- 6 moored buoy
- 7 drifting buoy
- 8 ice buoy [note: currently unused]
- 9 ice station (manned, including ships overwintering in ice)
- 10 oceanographic station data (bottle and low-resolution CTD/XCTD data)
- 11 mechanical/digital/micro bathythermograph (MBT)
- 12 expendable bathythermograph (XBT)
- 13 Coastal-Marine Automated Network (C-MAN) (NDBC operated)
- 14 other coastal/island station
- 15 fixed (or mobile) ocean platform (plat, rig)
- 16 tide gauge
- 17 high-resolution Conductivity-Temp.-Depth (CTD)/Expendable CTD (XCTD)
- 18 profiling float
- 19 undulating oceanographic recorder
- 20 autonomous pinneped bathythermograph

21 – glider

Background: *PT* settings 0-4 are derived from the "OSV or Ship Indicator" in NCDC (1968); *PT* settings 0-1 are very poorly documented and probably should be regarded as equivalent to ship data (PT=5).

9) DUPS dup status

Indicates duplicate status (Table D8). For the final R3.0 product, reports with *DUPS*>2 were not output (and landlocked *LZ*=1 reports were eliminated; see *R3.0-stat_trim:* <u>http://icoads.noaa.gov/e-doc/R3.0-stat_trim.pdf</u>)</u>. However, to allow for more detailed analysis of the processing results and possible adjustments, all those flagged reports were retained in R3.0 "total" datasets (see Supp. E).

Background: Matches predecessor field DS in LMR format.

Table D8. Duplicate status (*DUPS*) assignments. In previous Releases, "certain" (C) duplicates were eliminated from the LMR output, and then "uncertain" (U) duplicates were eliminated from LMRF. Prior to R3.0 processing, settings marked by footnotes apply only to pre-1980 data. For R3.0 processing, *DUPS*=3, 5, 6, and 7 were no longer used (indicated by grey shading).

DUPS	<u>U/C</u>	Description
0		unique
1		best duplicate
2		best duplicate with substitution
3	U	worse duplicate: uncertain weather element match with hour cross ¹
4	U	worse duplicate: uncertain weather element match with no cross
5	U	worse duplicate: uncertain weather element match with day cross ²
6	U	worse duplicate: time/space match with ID mismatch (unused until 1950)
7	U	worse duplicate: certain weather element match with hour cross ¹
8	С	worse duplicate: certain weather element match with no cross
9	С	worse duplicate: combined DUPS 4 and 6
10	С	worse duplicate: combined DUPS 6 and 8
11	С	worse duplicate: time/space/ID match
12	С	worse duplicate: combined DUPS 4 and 11
13	С	worse duplicate: combined DUPS 8 and 11
14	С	automatic data rejection
1 For Rel		applied to 1854-1979 data: for R2.0, applied to 1784-1979 data: for R2.5, applied to 1662-

1. For *Release 1*, applied to 1854-1979 data; for R2.0, applied to 1784-1979 data; for R2.5, applied to 1662-1979 data.

2. For *Release 1*, applied to 1854-1969 data; for R2.0, applied to 1784-1969 data; for R2.5, applied to 1662-1969 data.

10) DUPC dup check

The presence of a duplicate match between a Global Telecommunication System (GTS) and logbook (or other delayed-mode) report may provide some location verification, with greater credibility if *SLP* and *SST* match under "allowances." *DUPC* indicates whether such matches were detected during duplicate elimination processing (either the GTS or delayed-mode report is retained in the output data mixture), in case users might wish to make use of this information for independent quality control purposes:

0 – GTS and logbook match with SLP and SST match

1 – GTS and logbook match without SLP and SST match

2 – no GTS and logbook match was encountered

Background: Matches predecessor field *DC* in LMR format.

11) TC track check

TC, if set, indicates if a report was:

- 0 not track checked
- 1 track checked

Background: This indicator, which refers exclusively to track-checking procedures performed by external data providers, was unused prior to Release 2.0, and remains missing in most data. Specifically, only these decks were set to have *TC*=1 (either for R2.0, or for deck 721 for R3.0):

- 701 US Maury Collection
- 702 Norwegian Logbook Collection
- 704 US Marine Meteorological Journals Collection (1878-94)
- 721 German Maury Collection (set for R3.0)
- 733 Russian AARI North Pole (NP) Stations

Consequently, records from these decks with TC=1 are also available in R3.0.

12) PB pressure bias

PB, if set, indicates questionable sea level pressure data:

- 0 questionable *SLP*: level 0: individual platform (unused)
- 1 questionable *SLP*: level 1: deck
- 2 questionable SLP: level 2: deck

Background: All indicator settings unused prior to Release 2.0; still missing in most data (see LMR documentation, <u>http://icoads.noaa.gov/e-doc/lmr</u>, for additional information).

13) WX wave period indicator

14) SX swell period indicator

Unless missing, *WX* and *SX* indicate that the wave and swell periods were converted from code into whole seconds:

1 – period converted from code into whole seconds

15) C2 2nd country code

The country of immediate receipt (C2), which may differ from the recruiting country (C1) and may also differ from the ship's registry.

Background: *C2* was tracked for some earlier receipts of International Maritime Meteorological (IMM) logbook data, but IMM data are now generally received via Global Collecting Centres (GCCs; in Germany and UK). Thus this field is generally missing (see *C1*, field 16 for code tables and additional information).

QC elements

<u>16-27) SQZ-DQA</u>	adaptive QC flags			
28) ND	<u>night/day flag</u>			
29-34) SF-RF	trimming flags			
<u>35-48) ZNC-TNC</u>	NCDC-QC flags			
<u>49) QCE</u>	external (e.g., OSD)			
50) <i>LZ</i>	landlocked flag			
<u>51) QCZ</u>	source exclusion flags			
Quality control	and related flags, desc	ribed in detail	in	R3.0-stat_trim

(http://icoads.noaa.gov/e-doc/R3.0-stat_trim.pdf).

IMMT-5/FM 13 (Immt) attm (C5)

The fields described below are as they appear in IMMT-5. Many reports in R3.0 however come from older IMMT (or IMMPC) versions (see Supp. B) and may not contain data for every field within the *Immt* attm.

1) ATTI attm ID

2) ATTL attm length

Each attm begins with ATTI and ATTL. ATTI identifies the attm contents with a numeric identifier (ATTI=5 for Immt), and ATTL provides the total length of the attm (including ATTI and ATTL) in bytes.

3) OS observation source

For International Maritime Meteorological (IMM) logbook data, OS shows the observation source:

- 0 unknown
- 1 –logbook (paper)
- 2 –national telecommunication channels
- 3 –national publications
- 4 logbook (electronic)
- 5 global telecommunication channels (GTS)
- 6 –international publications

Background: Because the modified IMMT-4 configuration (developed because of deficiencies in the existing configuration) is not backward compatible, the IMMT version (see Supp. B, Table B2) has been added to IMMA (see C5, field 6) to allow proper interpretation of the observation source. [Note: Formerly in IMMT versions 0-3 (usage now discontinued): codes 1-3 also referred to "National data exchange," and codes 4-6 also referred to "International data exchange"; distinction added between paper and electronic logbook].

4) OP observation platform

For International Maritime Meteorological (IMM) logbook data, *OP* shows the observation platform:

- 0 unknown
- 1 selected ship
- 2 supplementary ship
- 3 auxiliary ship
- 4 registered VOSClim ship
- 5 fixed sea station (e.g., rig or platform)
- 6 coastal station
- 7 [reserved]
- 8 [reserved]
- 9 others/data buoy

Background: Because the modified IMMT-4 configuration (developed because of deficiencies in the existing configuration) is not backward compatible, IMMT version (see Supp. B, Table B2) has been added to IMMA (see C5, field 6) to allow proper interpretation of the observation source. [Note: Formerly in IMMT versions 0-3 (usage now discontinued): code 4 referred to "Automated station/data buoy;" and codes 7-8 referred to "Aircraft" and "Satellite," respectively].

5) FM FM code version

GTS traditional alphanumeric SHIP code "FM" version (see WMO 2015).

0 – previous to FM 24-V

. 1 – FM 24-V

- 2 FM 24-VI Ext.
- 3 FM 13-VII
- 4 FM 13-VIII
- 5 FM 13-VIII Ext.
- 6 FM 13-IX
- 7 FM 13-IX Ext.
- 8 FM 13-X
- 9 FM 13-XI
- A FM 13-XII Ext.
- B FM 13-XIII
- C FM 13-XIV Ext.

Background: A 1-character field in IMMT (see Supp. B, Table B2), which is stored in IMMA1 as a 1-character base36 value (see Table 1) to allow for expansion (in IMMA0 *FM* was a 2-character field). Yoshida (2004) describes use at least back to 1949 of the "FM" notation (e.g., in FM 21 SHIP and FM 22 SHIP). [Note: While the IMMT-5 range of this input field is only 0-C, and the IMMA0 range of this field was tightly constrained to 0-8 (reflecting the legal range of the input data at IMMT-2), the IMMA0 range was not increased to account for expansions in the range of this field associated with the intermediate IMMT-3/4 updates. Thus increasing the *FM* max. for IMMA1 accommodates future IMMT field adjustments without requiring adjustment in the IMMA1 configuration (but conversely offers less stringent control on the legality of the *FM* data).]

6) IMMV IMMT version

Indicates the applicable IMMT version within the attm, which accommodates some format evolution problems, e.g., in that some IMMT fields changed meaning between IMMT-3 and IMMT-4.

- 0 IMMT version just prior to version number being included
- 1 IMMT-1 (in effect from 2 Nov. 1994)
- 2 IMMT-2 (in effect from Jan. 2003)
- 3 IMMT-3 (in effect from Jan. 2007)
- 4 IMMT-4 (in effect from Jan. 2011)
- 5 IMMT-5 (in effect from June 2012)

7) IX station/weather indicator

8) W2 second past weather

IX (WMO Code 1860) indicates both whether the station is manned or automatic, and the status of present (*WW*, see C0, field 23) and past (*W1*, *W2*; WMO Code 4561, see C0, field 24) weather data:

- 1 manned included
- 2 manned omitted (no significant phenomenon to report)
- 3 manned omitted (no observation, data not available)
- 4 automatic included [using WMO Codes 4677 and 4561]
- 5 automatic omitted (no significant phenomenon to report)
- 6 automatic omitted (no observation, data not available)
- 7 automatic included using WMO Codes 4680 and 4531
 - Background: Starting 1 Jan. 1982, the procedure for reporting present (*WW*) and past (*W1*, *W2*) weather in FM 13 was altered significantly by adding *IX*, which allowed the "7 group" (7wwW₁W₂ for manual stations, and usually 7w_aw_aWa₁Wa₂ for automatic stations) to be omitted when there was no significant present or past weather to report (see Hahn et al. 1992). However, to improve climatological data quality, starting 2 Nov. 1994 FM 13 was again modified so that any present and

past weather including phenomena without significance shall be reported (see WMO 2015, Reg. 12.2.6.2). [Note: Refer to the LMR documentation for more information regarding use of IX with present and past weather data, and unforeseen complications attending its introduction in 1982 (e.g., IX was not included in IMMT until 1 March 1985). IX=4 was initially defined (WMO 1981) without the Code references (hence brackets above), and X=7 was introduced at a later date. The IX=7 value was not included in LMR; thus future work should seek to recover this information for data that were translated to IMMA from LMR.]

WMI indicator for wave measurement

WMI corresponds to the IMMT-5"indicator for wave measurement":

- 0 wind sea and swell estimated
- 1 wind sea and swell measured
- 2 mixed wave measured, swell estimated
- 3 other combinations measured and estimated
- 4 wind sea and swell measured
- 5 mixed wave measured, swell estimated
- 6 other combinations measured and estimated
- 7 wind sea and swell measured
- 8 mixed wave measured, swell estimated
- shipborne wave recorder shipborne wave recorder buoy buov

shipborne wave recorder

shipborne wave recorder

- buoy
- other measurement system other measurement system
- other measurement system
- 9 other combinations measured and estimated Background: Note: Field not included in the LMR regular section, thus future work should seek to recover this information for data that were translated into IMMA from LMR.]

10) SD2 swell direction (2nd)

11) SP2 swell period (2nd)

12) SH2 swell height (2nd)

Configurations as for SD, SP, and SH (C0, fields 46-48).

Background: [Note: Fields not included in the LMR regular section, thus future work should seek to recover this information for data that were translated into IMMA from LMR.]

13) IS ice accretion

Accretion on the ship according to WMO Code 1751:

- 1 = icing from ocean spray
- 2 = icing from fog
- 3 = icing from spray and fog
- 4 = icing from rain
- 5 = icing from spray and rain

14) ES ice thickness

Ice accretion thickness on the ship in centimeters.

15) RSice accretion rate

Accretion rate on the ship according to WMO Code 3551:

- 0 = ice not building up
- 1 = ice building up slowly
- 2 = ice building up rapidly
- 3 = ice melting or breaking up slowly
- 4 = ice melting or breaking up rapidly

16) IC1 concentration of sea ice

17) IC2 stage of development

18) IC3 ice of land origin

19) IC4 true bearing ice edge

20) IC5 ice situation/trend

The fields changed dramatically in 1982 (field names reflect the 1982 Codes):

9)
9739)

IMMA stores the old/new information as listed above in the same field, thus making it critical that users be aware of the code change. Configurations are as in IMMT-5 except for use of "A" (10 in base36) in place of "/."

Background: Separate fields (or a Code indicator) could be considered in the future. Earlier historical ice codes might also need to be researched for possible consideration. Met Office (1948) lists an Ice Group (c₂KD_ire) that may be similar or identical to the above pre-1982 code (see also Table B4 of Supp. B). Ice codes used at least for early telecommunicated data from ~1947-82 can be found at <u>http://icoads.noaa.gov/reclaim/pdf/Met_O_509.pdf</u>. [Note: Fields not included in the LMR regular section, thus future work should seek to recover this information for data that were translated into IMMA from LMR.]

21) *IR* indicator for precipitation data

22) RRR amount of precipitation

23) TR duration of period of reference for amount of precipitation

WMO Codes 1819, 3590, and 4019, respectively. Configurations are as in IMMT-5. Background: [Note: Fields not included in the LMR regular section, thus future work should seek to recover this information for data that were translated into IMMA from LMR.]

24) *NU* National use

A field available for national use in identifying data subsets copied from IMMT format.

25) QCI quality control (QC) indicator

Field QC/ provides general information about the level of manual and/or automated quality control (QC) that has been applied to the data, including usage if indicated of time sequence checks and possible usage of the standardized Marine QC (MQC) software. Configuration as in IMMT-5

(https://www.wmo.int/pages/prog/amp/mmop/documents/IMMT-5-JCOMM-4.pdf):

0 – no QC has been performed on this element

- 1 QC performed; element appears correct
- 2 QC performed; element appears inconsistent with other elements
- 3 QC performed; element appears doubtful
- 4 QC performed; element appears erroneous

5 – QC performed; element changed (possibly to missing) as a result

6 - QC flag amended: element flagged by CMas correct (1), but according to MQCS still appears suspect (2-4) or missing (9)

7 – QC flag amended: element flagged by CM as changed (5), but according to MQCS still appears suspect (2-4)

8 - [reserved]

9 – element is missing

Background: For values from formats IMMT0-3, code meanings for values 6-8 have changed multiple times over the course of the IMMT format evolution. For IMMT1-3, values 6-8 were termed 'Reserved'. For IMMT-0, values 7-8 were instead termed "not used." [Note: Field not included in the LMR regular section, thus future work should seek to recover this information for data that were translated into IMMA from LMR.]

- 26) Q/1 QC indicator for height of clouds
- 27) QI2 QC indicator for visibility
- 28) Q/3 QC indicator for clouds
- 29) QI4 QC indicator for wind direction
- 30) QI5 QC indicator for wind speed
- 31) Q/6 QC indicator for air temperature
- 32) Q/7 QC indicator for dew-point temperature
- 33) Q/8 QC indicator for air pressure
- 34) Q/9 QC indicator for weather

35) QI10 QC indicator for sea surface temperature

- 36) QI11 QC indicator for period of wind waves or of measured waves
- 37) Q112 QC indicator for height of wind waves or of measured waves
- 38) Q/13 QC indicator for swell
- <u>39)</u> Q/14 QC indicator for precipitation
- 40) Q/15 QC indicator for characteristic of pressure tendency
- 41) QI16 QC indicator for amount of pressure tendency
- 42) QI17 QC indicator for true direction of ship
- 43) QI18 QC indicator for ship's average speed
- 44) QI19 QC indicator for wet-bulb temperature

45) QI20 QC indicator for ship's position

Twenty quality control (QC) indicators applicable to individual fields or field groups (further details are available in Supp. B, Table B3; which also lists additional QC indicators available in IMMT-3/4/5). Configuration as in IMMT-5 (https://www.wmo.int/pages/prog/amp/mmop/documents/MQCS-7-JCOMM-4.pdf),

indicating QC as applied by the Contributing Member (CM) and/or by the Global Collecting Centres (GCCs). Indicator values include the following:

0 -- No quality control (QC) has been performed on this element

1 -- QC has been performed; element appears to be correct

2 -- QC has been performed; element appears to be inconsistent with other elements

3 -- QC has been performed; element appears to be doubtful

4 -- QC has been performed; element appears to be erroneous

5 -- The value has been changed as a result of QC

6 -- The original flag is set "1" (correct) and the value will be classified by MQCS as inconsistent, dubious, erroneous or missing

7 -- The original flag is set "5" (amended) and the value will be classified by MQCS as inconsistent, dubious, erroneous or missing

8 – [reserved]

9 -- The value of the element is missing

Values 6 and 7 are set when the original flag settings were amended by the GCCs using the Minimum Quality Control Standard (MQCS).

Background: [Note: Fields not included in the LMR regular section, thus future work should seek to recover this information for data that were translated into IMMA from LMR, plus additional QC indicators available in IMMT-3/-4.]

46) QI21 MQCS version

Version identification for the Minimum QC Standard (MQCS), with this expanded configuration defined for IMMT-5:

- 1 MQCS- I (Original version, Feb. 1989): CMM-X
- 2 MQCS-II (Version 2, March 1997) CMM-XII
- 3 MQCS-III (Version 3, April 2000) SGMC-VIII
- 4 MQCS-IV (Version 4, June 2001): JCOMM-I
- 5 MQCS-V (Version 5, July 2004): ETMC-I
- 6 MQCS-VI (Version 6, January 2011): JCOMM-III)
- 7 MQCS-VII (Version 7, June 2012): JCOMM-IV

Background: [Note: Field not included in the LMR regular section, thus future work should seek to recover this information for data that were translated into IMMA from LMR.]

47) HDG ship's heading

Direction to which the ship's bow is pointing, referenced to true North (001-360°; e.g., 360° = North, 90° = East).

Background: According to IMMT-2/-3/-4 documentation, 0 indicates no movement. However, KNMI has suggested that even if the ship is not moving it always has a heading, and therefore zero should not be reported for *HDG* (in contrast to *COG*). According to the IMMT-5 documentation (<u>https://www.wmo.int/pages/prog/amp/mmop/documents/IMMT-5-JCOMM-4.pdf</u>) valid range for heading is 001-360; the indicator for no movement has been removed.

48) COG course over ground

Direction the vessel actually moves over the fixed Earth, referenced to true North (0-360°; e.g., 360° = North, 0 = no movement, 90° = East).

49) SOG speed over ground

Speed the vessel actually moves over the fixed Earth, rounded to the nearest whole knot.

50) SLL maximum height > Summer load line

Maximum height of deck cargo above Summer maximum load line (reference level), rounded to the nearest whole meter.

51) SLHH departure of Summer max. load line from actual sea level

Departure of reference level (Summer maximum load line) from actual sea level. Difference to the nearest whole meter (0-99) between the Summer maximum load line and the sea level (water line); positive when the Summer maximum load line is above the level of the sea, and negative if below the water line.

52) *RWD* relative wind direction

Relative wind direction in degrees (1-360°) reported in a clockwise direction off the bow of the ship, using 360° when directly on the bow. *RWD*=0 when wind is calm relative to the deck (platform).

Background: It appears that no guidance currently exists for reporting RWD when D is reported as "variable, or all directions" (i.e., special code 362). Special code of 361 for calm no longer used in IMMT-5.

53) *RWS* relative wind speed

Reported in either whole knots or whole meters per second (e.g., 10 knots or 5 m/s), with units established by WI (C0, field 19). RWS is a 3-character field to store values of RWS larger than W (C0, field 20; if WI indicates knots), e.g., W=98 knots, RWS=101 knots.

Background: Fields added to IMMT-2 for VOSClim. [Note: Fields 147-153 were not included in the LMR regular section; thus future work should seek to recover this information for data that were translated into IMMA from LMR.]

54) QI22 QC indicator for ship's heading

55) QI23 QC indicator for course over ground

56) QI24 QC indicator for speed over ground

57) Q/25 QC indicator for maximum height > Summer load line

58) Q/26 Blank for IMMT-4/5, QC indicator for S_L in earlier IMMT versions

59) Q/27 QC indicator for departure of Summer max. load line from actual sea level

60) QI28 QC indicator for relative wind direction

61) QI29 QC indicator for relative wind speed

Eight additional quality control indicators applicable to individual fields or field groups from IMMT-3/4/5 (further details are available in Supp. B, Table B3). Indicator values are the same as for C5, fields 26-45.

Background: As from IMMT-4, usage of Q_{26} is discontinued, ref. IMMT-4 documentation: "now Q_{27} serves as the indicator for both S_L and HH." [Note: Fields not included in the LMR regular section, thus future work should seek to recover this information for data that were translated into IMMA from LMR, plus additional QC indicators available in IMMT-3/-4/-5.]

62) *RH* relative humidity

63) *RHI* relative humidity indicator

Relative humidity is stored in tenths of a percent. *RHI* shows the reported data precision and whether the *RH* was directly measured or computed according to the following:

- 0 Relative humidity in tenths of Percentage, measured and originally reported
- 1 Relative humidity in whole Percentage, measured and originally reported
- 2 [Reserved]
- 3 Relative humidity in tenths of Percentage, computed
- 4 Relative humidity in whole Percentage, computed

64) AWSI AWS indicator

An indicator of whether or not measurements are made using an automated weather station (AWS):

0 – No AWS

- 1 AWS
- 2 AWS plus manual observations

65) IMONO IMO number

Seven-digit unique ship identification number issued by the International Maritime Organization.

Model quality control (*Mod-qc*) attm (C6)

1) ATTI attm ID

2) ATTL attm length

Each attm begins with *ATTI* and *ATTL*. *ATTI* identifies the attm contents with a numeric identifier (*ATTI*=6 for *Mod-qc*), and *ATTL* provides the total length of the attm (including *ATTI* and *ATTL*) in bytes.

GTS bulletin header fields

<u>3) CCCC collecting center</u>

4) BUID bulletin ID

These two fields are part of the "abbreviated heading" (WMO 2009), providing product identification for purposes of transmission and communication handling ref., <u>http://www.nws.noaa.gov/oso/oso1/oso15/oso153/SECC123.htm</u>). Specifically, *CCCC* is the "international four-letter location indicator of the station or center originating or compiling the bulletin, as agreed internationally, and published in WMO–No.9, Volume C1, *Catalogue of Meteorological Bulletins*;" and *BUID* provides "data designators" (T₁T₂A₁A₂ii; see Background, and WMO 2009 for a detailed description).

Background: Using traditional alphanumeric codes, individual (ship or buoy) reports are transmitted over GTS beginning with the identification group $M_iM_iM_jM_j$ (e.g., BBXX or ZZXX used to indicate the SHIP or BUOY code, respectively) and collected together to form the "text" (i.e., content) of a "bulletin" (which when enveloped with an initial line and end-of-message signal constitutes the "message"). The initial information includes an abbreviated heading of the form:

T₁T₂A₁A₂ii CCCC YYGGgg (BBB)

where in the context of marine data (see http://www.nws.noaa.gov/tg/head.html):

T₁T₂: Data type and/or form designators

A1A2: Geographical and/or data type and/or time designators

ii: Used to differentiate two or more bulletins which contain data in the same code, originate from the same geographical area, and have the same originating center.

CCCC: International 4-letter location indicator of the station originating or compiling the bulletin (e.g., KWBC = Washington, NOAA)

YYGGgg: International date-time group (YY: day of month; GGgg: hour and minute)

(BBB): (optional) for delayed (RR_x) reports, or corrections (CC_x) or amendments (AA_x) to previously relayed reports

The additional elements YYGGgg and BBB making up the abbreviated heading could potentially be important, but are not presently retained e.g., in the UK Met Office VOSClim data. For example, the BBB information could be important to correct information that was not properly relayed initially, and later in the event errors are made in the decoding of the data (e.g., BBB data are not properly handled) there may be no opportunity to reprocess the data properly if header information is not archived. *CCCC* information may be important to determine transmission details (e.g., origination from Local Users Terminals for drifting buoy reports), but the significance of any of this information has not been fully determined.

Model comparison elements

5) FBSRC Feedback source

An indicator of whether or not measurements are made using an automated weather station (AWS):

0 – operational

Background: [Note: Any additional values are to be determined, e.g., for use with reanalyses.

7) BSWU bckd. wind U-component

8) SWU derived wind U-component

- 9) BSWV bckd. wind V-component
- 10) SWV derived wind V-component
- 11) BSAT bckd. air temperature
- 12) *BSRH* bckd. relative humidity
- 13) SRH (derived) relative humidity
- 14) BSST bckd. SST
- 15) MST model surface type
- 16) MSH model height of surface
- 17) BY bckd. year
- 18) BM bckd. month
- 19) BD bckd. day
- 20) BH bckd. hour

21) BFL bckd. forecast length (hours)

Model quality control feedback information.

Background: Upon receipt of each GTS report from a VOS ship or moored/drifting buoy, the UK Real Time Monitoring Centre (RTMC – UK Met Office) appends colocated parameters (and related information) from the Met Office forecast model for six variables—*SLP*, wind U- and V-components, air temperature, relative humidity, and *SST*—to a selection (translated into BUFR) of the originally reported GTS data. These augmented ship reports are made available in BUFR format to the VOSClim Data Assembly Center (DAC; at NOAA/NCEI), which converts them into IMMA1 format, including this attachment. [Additional technical notes:

(1) In R2.5 data, *BFL* was discovered to be subject to a conversion error and should not be used. Additionally, the original BUFR field that provides *BFL* is in minutes. *BFL* values for R3.0 have been corrected and are being reported in hours, when available.

(2) For *BSRH* and *SRH*, values appeared in the input data at least as high as 107%. While actual *RH* can't be that high, this raises the question whether the ranges of these model-generated fields should be increased in the future e.g., to 107%. Currently, ICOADS format translation or QC procedures remove any such values outside of the range 0-100%. On the other hand, the width of *MSH* has been expanded in IMMA1 to a 4-character field, since negative values (such as – 152.0 and less than –99) have been detected (plus larger positive values than previously allowed).

(3) *BSST* is translated to SI units at the Met Office using constant 273.15K, whereas a lower-precision 273.1K constant is used for *BSAT*, the only other temperature field presently being made available by the Met Office. To keep its resultant higher precision, *BSST* has been expanded to 5 characters. Explanation from Colin Parrett at the RTMC (28 September 2011):

"As far as I know, the conversions depend on the precision of the received data, using 273.0, 273.1 or 273.15 for 0, 1 or 2 (or more) decimal places. I've enquired with our MetDB Team for confirmation and I'll let you know if things have changed. The

background SST does come from a different source, so that might explain the greater precision."

(4) The referenced encoding constant 273.0 does not appear to apply to the temperature elements currently received from the Met Office, but in the event such data were received in the future a 4-character field configuration like that for *BSAT* would be sufficient (however, to accurately translate temperature data back from Kelvin to °C, it is crucial to know what constant has been used for encoding originally reported °C temperatures to Kelvin for storage in BUFR).]

Ship metadata (*Meta-vos*) attm (C7)

1) ATTI attm ID

2) ATTL attm length

Each attm begins with ATTI and ATTL. ATTI identifies the attm contents with a numeric identifier (ATTI=6 for *Mod-qc*), and ATTL provides the total length of the attm (including ATTI and ATTL) in bytes.

Ship metadata elements

3) MDS Metadata source

An indicator of source/provider of the metadata:

- 0-WMO Publication No. 47
- Center for Ocean-Atmospheric Prediction Studies, Tallahassee, USA Background: Originally designed to store metadata from WMO publication 47, the attm is also used by other data providers to submit metadata for vessels within their respective datasets.

<u>4) C1M</u>	recruiting country
AD – AND	
AE – UNIT	ED ARAB EMIRATES
<u>AF – AFG</u>	<u>HANISTAN</u>
<u>AG – ANT</u>	IGUA AND BARBUDA
<u>AI – ANGI</u>	JILLA
<u>AL – ALBA</u>	<u>ANIA</u>
<u>AM – ARN</u>	<u>IENIA</u>
	HERLANDS ANTILLES
<u>AO – ANG</u>	
<u> AQ – ANT</u>	
<u> AR – ARG</u>	
	RICAN SAMOA
<u>AT – AUS</u>	
<u>AU – AUS</u>	
<u>AW – ARL</u>	
	ND ISLANDS
<u>AZ – AZE</u>	
	NIA AND HERZEGOVINA
<u>BB – BAR</u>	
	GLADESH
<u>BE – BEL</u>	
	KINA FASO
BG – BUL	
<u>BH – BAH</u>	
<u>BI – BURI</u> BJ – BENI	
	IT BARTHÉLEMY
BM – BER	
	INEI DARUSSALAM
BO – BOL	
BO = BOL	

BR - BRAZIL BS – BAHAMAS BT – BHUTAN **BV – BOUVET ISLAND** BW – BOTSWANA **BY – BELARUS BZ – BELIZE** CA – CANADA CC - COCOS (KEELING) ISLANDS CD - CONGO, THE DEMOCRATIC REPUBLIC OF THE CF – CENTRAL AFRICAN REPUBLIC CG – CONGO CH - SWITZERLAND <u>CI – CÖTE D'IVOIRE</u> CK - COOK ISLANDS <u>CL – CHILE</u> CM – CAMEROON <u>CN – CHINA</u> <u>CO – COLOMBIA</u> CR – COSTA RICA CS - SERBIA AND MONTENEGRO CU – CUBA CV – CAPE VERDE CX - CHRISTMAS ISLAND CY - CYPRUS CZ – CZECH REPUBLIC DD – GERMAN DEOMCRATIC REPUBLIC DE - GERMANY <u>DJ – DJIBOUTI</u>

DK – DENMARK DM – DOMINICA **DO – DOMINICAN REPUBLIC** DZ – ALGERIA EA – KENYA, UGANDA, TANZANIA EC – ECUADOR EE – ESTONIA EG – EGYPT **EH – WESTERN SAHARA** ER – ERITREA <u>ES – SPAIN</u> ET – ETHIOPIA EU – EUMETNET FI – FINLAND FJ – FIJI FK - FALKLAND ISLANDS (MALVINAS) FM - MICRONESIA, FEDERATED STATES OF FO – FAROE ISLANDS FR – FRANCE GA - GABON **GB – UNITED KINGDOM** GD – GRENADA GE – GEORGIA **GF – FRENCH GUIANA** GG – GUERNSEY GH – GHANA GI – GIBRALTAR GL – GREENLAND GM – GAMBIA GN – GUINEA GP – GUADELOUPE **GQ – EQUATORIAL GUINEA** <u>GR – GREECE</u> GS - SOUTH GEORGIA AND THE SOUTH SANDWICH ISLANDS <u>GT – GUATEMALA</u> <u>GU – GUAM</u> <u>GW – GUINEA-BISSAU</u> <u>GY – GUYANA</u> HK - HONG KONG HM - HEARD ISLAND AND MCDONALD **ISLANDS** HN - HONDURAS HR – CROATIA HT – HAITI HU – HUNGARY ID – INDONESIA IE - IRELAND IL - ISRAEL IM - ISLE OF MAN IN - INDIA **IO - BRITISH INDIAN OCEAN TERRITORY** IQ – IRAQ IR - IRAN, ISLAMIC REPUBLIC OF IS – ICELAND IT – ITALY JE - JERSEY JM – JAMAICA JO – JORDAN <u>JP – JAPAN</u> KE – KENYA

KG - KYRGYZSTAN KH – CAMBODIA KI – KIRIBATI **KM – COMOROS** KN – SAINT KITTS AND NEVIS KP - KOREA, DEMOCRATIC PEOPLE'S **REPUBLIC OF** KR - KOREA, REPUBLIC OF KW – KUWAIT KY – CAYMAN ISLANDS KZ – KAZAKHSTAN LA – LAO PEOPLE'S DEMOCRATIC **REPUBLIC** <u>LB – LEBANO</u>N <u>LC – SAINT LUCIA</u> LI – LIECHTENSTEIN LK – SRI LANKA LR – LIBERIA LS - LESOTHO LT – LITHUANIA LU – LUXEMBOURG LV – LATVIA LY – LIBYAN ARAB JAMAHIRIYA MA – MOROCCO MC - MONACO MD - MOLDOVA, REPUBLIC OF ME – MONTENEGRO MF - SAINT MARTIN MG - MADAGASCAR MH – MARSHALL ISLANDS THE MK – MACEDONIA, FORMER YUGOSLAV REPUBLIC OF ML – MALI MM – MYANMAR MN – MONGOLIA MO – MACAO MP – NORTHERN MARIANA ISLANDS MQ - MARTINIQUE <u>MR – MAURITANIA</u> <u>MS – MONTSERRAT</u> <u>MT – MALTA</u> MU – MAURITIUS MV - MALDIVES MW - MALAWI MX - MEXICO MY - MALAYSIA MZ – MOZAMBIQUE NA – NAMIBIA NC - NEW CALEDONIA NE – NIGER NF - NORFOLK ISLAND NG – NIGERIA NI – NICARAGUA NL - NETHERLANDS NO – NORWAY NP - NEPAL NR - NAURU NU – NIUE NZ – NEW ZEALAND OM – OMAN OT - OTHER PA – PANAMA

- PE PERU PF – FRENCH POLYNESIA PG – PAPUA NEW GUINEA PH – PHILIPPINES PK – PAKISTAN PL - POLAND PM - SAINT PIERRE AND MIQUELON PN – PITCAIRN PR – PUERTO RICO PS - PALESTINIAN TERRITORY, OCCUPIED PT – PORTUGAL PW – PALAU <u> PY – PARAGUAY</u> <u>QA – QATAR</u> <u>RE – REUNION</u> <u>RO – ROMANIA</u> <u>RS – SERBIA</u> RU – RUSSIAN FEDERATION RW – RWANDA SA – SAUDI ARABIA SB - SOLOMON ISLANDS SC - SEYCHELLES SD - SUDAN SE - SWEDEN SG - SINGAPORE SH – SAINT HELENA SI – SLOVENIA SJ - SVALBARD AND JAN MAYEN SK - SLOVAKIA SL – SIERRA LEONE SM - SAN MARINO SN - SENEGAL SO - SOMALIA SR – SURINAME ST - SAO TOME AND PRINCIPE SV – EL SALVADOR SY – SYRIAN ARAB REPUBLIC SZ – SWAZILAND TC - TURKS AND CAICOS ISLANDS TD – CHAD
- **TF FRENCH SOUTHERN TERRITORIES** TG – TOGO TH - THAILAND TJ – TAJIKISTAN <u>TK – TOKELAU</u> TL – TIMOR-LESTE TM – TURKMENISTAN TN – TUNISIA TO – TONGA TR – TURKEY TT – TRINIDAD AND TOBAGO TV – TUVALU TW - TAIWAN, PROVINCE OF CHINA TZ – TANZANIA, UNITED REPUBLIC OF <u>UA – UKRAINE</u> UG – UGANDA UM - UNITED STATES MINOR OUTLYING **ISLANDS** US - UNITED STATES UY – URUGUAY UZ – UZBEKISTAN VA - HOLY SEE (VATICAN CITY STATE) - SAINT VINCENT AND VC THE GRENADINES VE - VENEZUELA VG - VIRGIN ISLANDS, BRITISH VI – VIRGIN ISLANDS, U.S. VN – VIET NAM VU – VANUATU WF - WALLIS AND FUTUNA WS – SAMOA XX - AMBIGUOUS CODE YE – YEMEN
- 5) *OPM* type of ship (program)
 - 10 Selected ships
 - 15 Selected ships (AWS)
 - 30 VOSClim
 - 35 VOSClim (AWS)
 - 40 Supplementary ships
 - 45 Supplementary ships (AWS)
 - 70 Auxiliary ships
 - 75 Auxiliary ships (AWS)
 - 99 Unknown

6) KOV kind of vessel

- BA Barge
- BC Bulk Carrier
- CA Cable ship
- CG Coast Guard Ship
- CS Container Ship

ZM – ZAMBIA ZW – ZIMBABWE

<u>YT – MAYOTTE</u>

ZA – SOUTH AFRICA

- ZY NONE / SELF RECRUITED
- ZZ THIRD PARTY SUPPORT SHIPS

- DR Dredger
- FE Passenger ferries
- FP Floating production and storage units
- FV Other Fishing Vessel
- GC General Cargo
- GT Gas Tanker
- IC Icebreaking vessel
- IF Inshore Fishing Vessel
- LC Livestock carrier
- LT Liquid Tanker
- LV Light Vessel
- MI Mobile installation including mobile offshore drill ships, jack-up rigs and semi-
- submersibles MS – Military Ship
- OT Other
- OW Ocean Weather Ship
- PI Pipe layer
- PS Passenger ships and cruise liners
- RF Ro/Ro Ferry
- RR Ro/Ro Cargo
- RS Refrigerated cargo ships including banana ships
- RV Research Vessel
- SA Large sailing vessels
- SV Support Vessel
- TR Trawler
- TU Tug
- VC Vehicle carriers
- YA Yacht / Pleasure Craft
- 7) COR country of registry Encoding same as C1M.
- 8) TOB type of barometer
 - AN Aneroid barometer (issued by Port Meteorological Officer or Meteorological Agency)
 - DA Digital Aneroid Barometer
 - ELE electronic digital barometer
 - MER Mercury Barometer
 - SAN Ship's Aneroid Barometer
 - OT Other
- 9) TOT type of thermometer
 - ALC Alcohol Thermometer
 - ELE Electric (resistance) Thermometer
 - MER Dry Bulb Mercury Thermometer
- 10) EOT exposure of thermometer
 - A Aspirated (Assmann type)
 - S Screen (not ventilated)
 - HH Hand-held digital thermometer / humidity sensor
 - RS Radiation shield (e.g. cylindrical / Gill multi-plate)

- SG Ship's Sling
- SL Sling
- SN Ship's screen
- US Unscreened
- VS Screen (ventilated)
- W Whirling
- 11) LOT screen location
 - 1 Bridge wing port
 - 2 Bridge wing starboard
 - 3 Bridge wing both sides
 - 4 Bridge wing windward side
 - 5 Wheelhouse top port
 - 6 Wheelhouse top starboard
 - 7 Wheelhouse top both
 - 8 Wheelhouse top center
 - 9 Wheelhouse top windward side
 - 10 Mainmast
 - 11 Foremast
 - 12 Mast on Wheelhouse top
 - 13 Main deck port side
 - 14 Main deck starboard side
 - 15 Main deck both sides
 - OT Other (specify in footnote)

12) TOH type of hygrometer

- 1 Hygristor
- 2 Chilled Mirror
- 3 Other
- C Capacitance
- E Electric
- H Hair hygrometer
- P Psychrometer
- T Torsion

13) EOH exposure of hygrometer

Encoding same as EOT.

- 14) SIM SST measurement method
 - BTT Bait tanks thermometer
 - BU Bucket thermometer
 - C Thermometer in condenser intake on steam ships, or inlet engine cooling system on motor ships
 - HC Hull contact sensor
 - HT "Through hull" sensor
 - OT Other
 - RAD Radiation thermometer
 - TT Trailing thermistor

15) LOV length of vessel

16) DOS depth of SST measurement

17) HOP height of visual observation platform	
---	--

height of air temperature sensor

18) HOT 19) HOB 20 HOA height of barometer

<u>20 HOA</u> height of anemometer Height and depth elements 15 – 20 are stored to the nearest whole meter.

21) SMF source metadata file

WMO Pub. 47 source file for the metadata encoded as 4-digit year and 1-digit quarter (e.g., $19991 = 1^{st}$ quarter of 1999).

22) SME source metadata element

Line number from source file.

23) SMV source format version

- 1 Output from digitization project, semi-colon delimited format (1955)
- 2 Output from digitization project, semi-colon delimited format (1956)
- 3 Output from digitization project, semi-colon delimited format (1957 1967)
- 4 Output from digitization project, semi-colon delimited format (1968–69)
- 5 Fixed format (1970–94)
- 6 Semicolon delimited format (1995–2001)
- 7 Semicolon delimited format (2002–2007 q1)
- 8 Semicolon delimited format (2007 2008)
- 9 Semicolon delimited format (2009 2014)

Background: See Kent et. al (2007a) for details on version information.

Fields 4 – 23 contain metadata selected from WMO–No. 47 (1955–) by the UK National Oceanography Centre, Southampton (Kent et al. 2007a, Berry et al. 2009). Some deck 740 (Research Vessel Data Quality-Evaluated by FSU/COAPS) metadata have also been stored in this attachment. Tables defining select field have been reproduced from Berry et al. 2009 (http://icoads.noaa.gov/e-doc/imma/WMO47IMMA 1966 2007-R2.5.pdf).

Background: The codes defined in WMO–No. 47, and used in IMMA, for *OPM* and *SIM* differ from the codes used for the similar fields *OP* and *SI*. Prior to 1995 a 3digit numeric code was defined in WMO–No. 47 for *C1M*; starting in 1995, WMO– No. 47 adopted the 2-character ISO alphabetic code, which was in 1998 also adopted for IMMT. For *C1M*, the earlier 3-digit numeric codes were transformed by NOCS into the 2-character alphabetic codes.

Near-surface oceanographic data (Nocn) attm (C8)

<u>1) ATTI attm ID</u> 2) ATTL attm length

Each attm begins with ATTI and ATTL. ATTI identifies the attm contents with a numeric identifier (ATTI=8 for Nocn), and ATTL provides the total length of the attm (including ATTI and ATTL) in bytes (ATTL=102 [2U in base36] for Nocn).

Near-surface oceanographic data and metadata elements

3) OTV temperature value

4) OTZ temperature depth

Temperature of water is stored in thousandths of a degree Celsius along with the associated depth of the measurement to the nearest hundredth of a meter.

Background: The *SST* min. and max. limits in the *Core* (Table C0) are -99.0 to 99.0°C with a precision of 0.1°C, this attachment has greater precision as is appropriate for modern oceanographic profile data, with a max. value based roughly on QC limits from the Global Ocean Surface Underway Data (GOSUD) program (http://www.gosud.org).

5) OSV salinity value

6) OSZ salinity depth

Salinity of water is stored as a unit-less value (commonly known as the practical salinity unit) to the nearest thousandths along with the associated depth of the measurement to the nearest hundredth of a meter.

7) OOV dissolved oxygen value

8) OOZ dissolved oxygen depth

Dissolved oxygen concentration is stored in hundredths of a milliliter per liter along with the associated depth of the measurement to the nearest hundredth of a meter.

9) OPV phosphate value

10) OPZ phosphate depth

Phosphate concentration is stored in hundredths of a micromole per liter along with the associated depth of the measurement to the nearest hundredth of a meter.

11) OSIV silicate value

12) OSIZ silicate depth

Silicate concentration is stored in hundredths of a micromole per liter along with the associated depth of the measurement to the nearest hundredth of a meter.

13) ONV nitrate value

14) ONZ nitrate depth

Nitrate concentration is stored in hundredths of a micromole per liter along with the associated depth of the measurement to the nearest hundredth of a meter.

15) OPHV salinity value

16) OPHZ salinity depth

pH of water is stored as a unit-less value to the nearest hundredth along with the associated depth of the measurement to the nearest hundredth of a meter.

17) OCV total chlorophyll value

18) OCZ total chlorophyll depth

Total chlorophyll concentration is stored in hundredths of a microgram per liter along with the associated depth of the measurement to the nearest hundredth of a meter.

19) OAV alkalinity value

20) OAZ alkalinity depth

Alkalinity concentration is stored in hundredths of a milliequivalent per liter along with the associated depth of the measurement to the nearest hundredth of a meter.

21) OPCV partial pressure of carbon dioxide value

22) OPCZ partial pressure of carbon dioxide depth

Partial pressure of carbon dioxide is stored in tenths of a microatmosphere along with the associated depth of the measurement to the nearest hundredth of a meter.

23) ODV dissolved inorganic carbon value

24) ODZ dissolved inorganic carbon depth

Dissolved inorganic carbon concentration is stored in tenths of a micromole per liter along with the associated depth of the measurement to the nearest hundredth of a meter.

25) *PUID* provider's unique record identification

A unique identifier associated with the record that was assigned by the data provider.

Edited Cloud Report (*Ecr*) attm (C9)

Background: This attm is based on previous work of Carole Hahn. Element descriptions are summarized below. Additional details are provided in Hahn et al. (1995) and Hahn and Warren (1999).

- Hahn, C.J. and S.G. Warren, 1999: Extended Edited Synoptic Cloud Reports from Ships and Land Stations Over the Globe, 1952-1996. NDP-026C, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN, doi:<u>10.3334/CDIAC/cli.ndp026c</u>.
- Hahn, C.J., S.G. Warren and J. London, 1995: The effect of moonlight on observation of cloud cover at night, and application to cloud climatology. *J. Climate*, **8**, 1429-1446, doi: 10.1175/1520-0442(1995)008<1429:TEOMOO>2.0.CO;2.

1) ATTI attm ID

2) ATTL attm length

Each attm begins with ATTI and ATTL. ATTI identifies the attm contents with a numeric identifier (ATTI=9 for Ecr), and ATTL provides the total length of the attm (including ATTI and ATTL) in bytes (ATTL=32 for Ecr).

Extended Edited Cloud Report (EECR) basic elements

3) CCe Change code

Indicator of whether the original report was changed (edited) during processing. Code values are defined in Table C9a (and previously in sec. 3.3 of Hahn and Warren [1999]). Table C9b gives definitions of cloud and weather conditions used in Table C9a, for example "fog" or "showers".

Table C9a. Change codes (*CCe*) and their associated descriptions, cases categorizations, and field changes made (from Table 3 of Hahn and Warren (1999)). The *CCe* ordering in this table (0-13) also reflects the order in which changes to the cloud fields must be made during processing.

CCe ¹	<u>Description</u>	Case	Changes made
000		0000	<u>Onanges made</u>
0	No changes required		None
1	Cause of N=9 determined from	N=9 with precipitation or	Ne=8
	WW	fog	NHe=8
	Set <i>Ne</i> =8, <i>NHe</i> =8, and <i>He</i> =0		<i>He</i> =0
	If CL missing, then set CLe=0		<i>CLe</i> =10,11 or
	If foggy, then set CLe=11		CMe=10
	If showers, then set CLe=10		
	If drizzle/rain/snow, then set <i>CMe</i> =10		
2	<i>NH</i> is amount of sky covered by medium cloud if no low cloud is	<i>NH</i> =0 with <i>CM</i> >0 and <i>CL</i> =0 and <i>CH</i> ≤0	<i>NHe</i> =N
	present. If <i>NH</i> =0 with <i>CM</i> present and <i>CL</i> =0; then if <i>CH</i> present, set <i>NHe</i> missing else, set <i>NHe</i> =N	<i>NH</i> =0 with <i>CM</i> >0 and <i>CL</i> =0 and <i>CH</i> >0	<i>NHe</i> =missing
3	If <i>NH=N</i> or missing and only high cloud present, set <i>NHe</i> =0	<i>NH=N</i> with <i>CH</i> >0 and <i>CL=CM</i> =0	<i>NHe</i> =0
1			

4	If <i>NH<n< i=""> and only low cloud is present, then set <i>NHe</i>=missing</n<></i>	<i>NH<n< i=""> where it should be <i>NH=N</i></n<></i>	NHe=missing
	If <i>NH<n< i=""> and only mid cloud is present, then set <i>NHe</i>=missing</n<></i>	<i>NH<n< i=""> where it should be <i>NH=N</i></n<></i>	NHe=missing
	If <i>NH⊭N</i> and only high cloud present, set <i>NHe</i> =missing	<i>NH≠N</i> with <i>CH</i> >0 and <i>CL=CM</i> =0	NHe=missing
5	If low cloud information (<i>NH</i> or <i>CL</i>) is missing and <i>CM</i> or <i>CH</i> present, then set <i>CMe</i> = <i>CHe</i> =missing	<i>CL</i> ="/" with <i>CM</i> or <i>CH</i> not "/"	CMe,CHe=missing
6	If (<i>N=NH=8</i> or <i>N=NH=</i> 7) and <i>CM</i> =0, then set <i>CMe</i> =missing If (<i>N=NH=8</i> or <i>N=NH=</i> 7) and <i>CH=0,</i> then set <i>CHe</i> =missing	<i>CM</i> or <i>CH</i> miscoded as 0	<i>CMe</i> or <i>CHe</i> =missing
7	If <i>CM</i> =7 when drizzle/rain/snow, then set <i>CMe</i> =11 If <i>CM</i> =2 when drizzle/rain/snow, then set <i>CMe</i> =12	<i>CM</i> =7 or 2 identified as <i>Ns</i>	<i>CMe</i> =11 or 12
8	If drizzle/rain/snow and <i>CM</i> is missing and <i>CL</i> is present; and $CL \neq 1,2,3$ or 9; then if either $WW \ge 60$ or $CL = 7$ or $CL = 0$; set CMe = 10	<i>CM</i> ="/" for <i>Ns</i>	<i>CMe</i> =10
9	If <i>CM</i> is missing and both <i>CL</i> and <i>CH</i> present, then set <i>CMe</i> =0	CM or CH miscoded as "/"	CMe or CHe=0
	If <i>N</i> ≤4, <i>N=NH</i> , <i>CL</i> is present, <i>CM</i> =missing, and <i>CCe</i> =0, then <i>CMe</i> =0		
	If <i>N</i> ≤4, <i>N=NH, CL</i> is present, <i>CH</i> =missing, and <i>CCe</i> =0, then set <i>CHe</i> =0		
10	<i>N</i> =9 not explainable by <i>WW</i>		all parameters set missing
11	NH>N		all parameters set missing
12	<i>N</i> =0 accompanied by precipitation		all parameters set missing
13	N>0 and CL=CM=CH=0		all parameters set missing

1. Also order in which changes are made, but *CCe*=9 is recorded only if no previous change occurred (this conflict can occur only with *CCe*=7 or 8).

Table C9b. Cloud and Weather Type Definitions Used in ECRs (modified from Table 2 of Hahn and Warren (1999)). Note that "/" has been coded in IMMA format as "A", interpreted as "10".

Level	Shorthand	Meaning	Synoptic Codes	Extended Ecr
	notation	-		Codes ¹
	тс	Total cloud cover	N = 0-9	<i>Ne</i> =0-8

	Cr	Completely clea	r N = 0	<i>Ne</i> =N
	Ppt	sky Precipitation	WW= 50-75, 77, 79, 80-99	
	D	Drizzle	50-59	
	R	Rain	60-69	
	S	Snow	70-75, 77, 79	
	Ts	Thunderstorm c		
		Shower		
Low			CL=	
	Fo	Sky obscured by fo	g / with N=9 and	<i>CLe</i> =11
			ww=10-12,40-49	
	St	Stratus	6, 7	CLe=CL
	Sc	Stratocumulus	4, 5, 8	CLe=CL
	Cu	Cumulus	1, 2	CLe=CL
	Cb	Cumulonimbus	3, 9,	CLe=CL
			or N=9 with ww=Ts	CLe=10
Mid			CM =	
	Ns	Nimbostratus	2,7, or N=9 with ww=DRS	<i>CMe</i> =12,11,10
			/ with ww=DRS and CL=0,7	<i>CMe</i> =10
			/ with ww= RS and CL=4-8	<i>CMe</i> =10
	As	Altostratus	1; 2 if ww not DRS	CMe=CM
	Ac	Altocumulus	3,4,5,6,8,9;	CMe=CM
			7 if ww not DRS	CMe=CM
High			CH =	
1 In the	Hi	Cirriform clouds	1-9	CHe=CH

1. In the processing for the extended code both "/" ("A" in IMMA) and missing (blank in IMMA) are treated in the same way.

<u>4) WWe</u>	present weather
5) Ne	total cloud amount
6) NHe	lower cloud amount
7) He	lower cloud base height
8) CLe	low cloud type
9) CMe	middle cloud type

10) CHe high cloud type

Weather and cloud variables coded as specified by WMO and as documented in the Core for elements WW, N, NH, H, CL, CM, and CH (C0, fields 23, 36, 37, 40, 38, 41, and 42, respectively) except that CLe and CMe have been "extended" as indicated in Tables C9c and C9d, respectively. Also, cases of N=9 with fog or precipitation have been converted to N=8 (defined in Table C9b). Any such conversion is recorded in the change code (CCe, Table C9a).

NOTE: An Ecr attachment is provided only if N is given in the original report.

Table C9c. Low cloud type (*CLe*) coding information.

<u>Code</u>	<u>WMO (or</u> <u>EECR) Code</u>	Description
0 1	Code 0513 Code 0513	no stratocumulus, stratus, cumulus or cumulonimbus cumulus with little vertical extent and seemingly flattened, or ragged cumulus, other than of bad weather, or both
2	Code 0513	cumulus of moderate or strong vertical extent, generally with protuberances in the form of domes or towers, either accompanied or

		not by other cumulus or stratocumulus, all having bases at the same
		level
3	Code 0513	cumulonimbus, the summits of which, at least partially, lack sharp
Ŭ		outlines but are neither clearly fibrous (cirriform) nor in the form of an
		anvil; cumulus, stratocumulus or stratus may also be present
4	Code 0513	stratocumulus formed by the spreading out of cumulus; cumulus may
	0000 0010	also be present
5	Code 0513	stratocumulus not resulting from the spreading out of cumulus
6	Code 0513	stratus in a more or less continuous later, or in ragged shreds, or both
-		but no stratus fractus of bad weather
7	Code 0513	stratus fractus of bad weather or cumulus fractus of bad weather, or
		both (pannus), usually below altostratus or nimbostratus
8	Code 0513	cumulus and stratocumulus other than that formed from the
		spreading out of cumulus; the base of the cumulus is at a different
		level from that of the stratocumulus
9	Code 0513	cumulonimbus, the upper part of which is clearly fibrous (cirriform)
		often in the form of an anvil; either accompanied or not by
		cumulonimbus without anvil or fibrous upper part, by cumulus,
		stratocumulus, stratus or pannus
10	(EECR code)	cumulonimbus, identified from sky obscured (<i>N</i> =9) accompanied by
		showery precipitation or thunderstorm (WW≥80)
11	(EECR code)	fog, identified from sky obscured (N=9) accompanied by WW
		indicating fog (WW=10-12 or 40-49)

Table C9d. Medium cloud type (CMe) coding information.

<u>Code</u>	<u>WMO (or</u> EECR) Codo	<u>Description</u>
	<u>EECR) Code</u>	
0	Code 0515	no altocumulus, altostratus or nimbostratus
1	Code 0515	altostratus, the greater part of which is semi-transparent; through this part the sun or moon may be weakly visible, as through ground glass
2	(EECR code)	altostratus, the greater part of which is sufficiently dense to hide the sun or moon
3	Code 0515	altocumulus, the greater part of which is semi-transparent; the various elements of the cloud change only slowly and are all at a single level
4	Code 0515	patches (often in the form of almonds or fish) of altocumulus, the greater part of which is semi-transparent; the clouds occur at one or more levels and the elements are continually changing in appearance
5	Code 0515	semi-transparent altocumulus in bands, or altocumulus, in one or more continuous layer (semi-transparent or opaque), progressively invading the sky; these generally thicken as a whole
6	Code 0515	altocumulus resulting from the spreading out of cumulus or cumulonimbus
7	(EECR code)	altocumulus in two or more layers, usually opaque in places, and not progressively invading the sky; or opaque layer of altocumulus, not progressively invading the sky; or altocumulus together with altostratus
8	Code 0515	altocumulus with sproutings in the form of small towers or battlements, or altocumulus having the appearance of cumuliform tufts
9	Code 0515	altocumulus of a chaotic sky, generally at several levels

10	(EECR code)	nimbostratus, identified from sky obscured (<i>N</i> =9) accompanied by
11	(EECR code)	drizzle, or non-showery precipitation nimbostratus, identified from <i>CM</i> =7 accompanied by <i>WW</i> indicating
12	(EECR code)	rain nimbostratus, identified from <i>CM</i> =2 accompanied by <i>WW</i> indicating
	· · · · · · ·	rain

EECR derived cloud elements

11) AM middle cloud amount

12) AH high cloud amount

These variables give the "actual" amounts of middle and high clouds, derived from N and NH with use of the random overlap equation, if necessary (see sec. 3.5 of Hahn and Warren [1999]).

13) UM NOL middle amount

14) UH NOL high amount

These variables, derived from N and NH, give the "non-overlapped" (NOL) amounts of middle and high clouds; i.e., the amounts visible from below (see sec. 3.5 of Hahn and Warren [1999]).

EECR sky brightness elements

15) SBI sky-brightness indicator

The sky-brightness indicator has a value of "1" (light) if the illuminance criterion described in Hahn et al. (1995) was satisfied at the time and place of the report, suggesting that there was adequate light for visual observation of cloud cover and cloud types (if not, then *SBI*=0; dark). This variable can be used in lieu of *SA* and *RI* if one accepts the criterion recommended in Hahn et al. (1995).

16) SA solar altitude

17) *RI* relative lunar illuminance

The solar and lunar parameters needed to determine the illuminance provided by the sun or moon for the date, time and location of the report (see sec. 3.6 of Hahn and Warren (1999)). SA is the altitude of the sun above the horizon. RI is the relative lunar illuminance, defined in Hahn et al. (1995), which depends on the lunar altitude and phase, and the earth-moon distance. The illuminance criterion of Hahn et al. (1995) is satisfied (*SBI*=1) when *SA*≥-9° or *RI*>0.11. A negative value of RI means the moon was below the horizon.

Reanalysis QC/feedback (*Rean-qc*) attm (C95)

1) ATTI attm ID

2) ATTL attm length

Each attm begins with ATTI and ATTL. ATTI identifies the attm contents with a numeric identifier (ATTI=95 for Rean-qc), and ATTL provides the total length of the attm (including ATTI and ATTL) in bytes (ATTL=61 for Rean-qc).

Reanalysis QC/feedback data and metadata elements

3) ICNR Input component number-Rean-qc

Component within the IMMA record for which the reanalysis QC/feedback applies (e.g., 0=*Core* or appropriate *ATTI* for other attm).

4) FNR Field number – Rean-qc

Field number from the referenced IMMA component (*ICNR*) for which the reanalysis QC/feedback applies (e.g., for sea temperature in the *Core*, FNR = 35 and for sea temperature from the *Nocn*, FNR = 3).

5) DPRO Data provider – reanalysis: lead organization

An indicator of lead organization providing the QC/feedback:

- 1 ECMWF
- 2 NOAA-NCEP
- 3 NASA
- 4 JMA

6) DPRP Data provider – reanalysis: project

An indicator of the project providing the QC/feedback:

- 1 ERA-20C
- 2 CFSRv2
- 3 MERRA
- 4 JRA-55

7) UFR Usage flag - reanalysis

An indicator of whether or not the record was used in the reanalysis:

- 1 Assimilated and used
- 2 Assimilated and rejected
- 3 Blacklisted
- 4 Whitelisted
- 5 Available but not used
- 6 None apply

Background: Blacklisted records (*UFR*=3) are determined *a priori* to be erroneous and are not used. Whitelisted records (*UFR*=4) are determined *a priori* to be used regardless of assimilation assessment.

8) *MFGR* Model-collocated first guess value/representative value in case of ensemble methods

Value of model-collocated first guess or a representative value in case ensemble methods are used.

Background: The range of minimum and maximum values, numeric precision, and units of measurement are all inherited from *ICNR* & *FNR*, with numerical precision increased by one (additional) position right of the decimal to better accommodate numerical precision used in the assimilation process. For example, *ICNR*=0 and *FNR*=29 refer to *AT*, which can range from –99.9 to 99.9, with precision and units of 0.1°C. Thus feedbacks on *AT* stored in this attm in *MFGR, MAR* and *BCR* have precision increased to 0.01°C, with range –99.99 to 99.99.

9) MFGSR Model-collocated first guess spread

Spread of model-collocated first guess. This is an optional field only used in the case of ensemble reanalyses.

<u>10) MAR</u> Model-collocated analysis value/representative value in case of ensemble methods

Model-collocated analysis value or a representative value in case ensemble methods are used.

Background: The range of minimum and maximum values, numeric precision, and units of measurement are all inherited from *ICNR* & *FNR*, with numerical precision increased by one (additional) position right of the decimal to better accommodate numerical precision used in the assimilation process. For example, *ICNR*=0 and *FNR*=29 refer to *AT*, which can range from –99.9 to 99.9, with precision and units

of 0.1°C. Thus feedbacks on *AT* stored in this attm in *MFGR, MAR* and *BCR* have precision increased to 0.01°C, with range –99.99 to 99.99.

11) MASR Model-collocated analysis spread

Spread of model-collocated analysis value. This is an optional field only used in the case of ensemble reanalyses.

12) BCR Bias corrected value

Bias corrected value from model.

Background: The range of minimum and maximum values, numeric precision, and units of measurement are all inherited from *ICNR* & *FNR*, with numerical precision increased by one (additional) position right of the decimal to better accommodate numerical precision used in the assimilation process. For example, *ICNR*=0 and *FNR*=29 refer to *AT*, which can range from –99.9 to 99.9, with precision and units of 0.1°C. Thus feedbacks on *AT* stored in this attm in *MFGR, MAR* and *BCR* have precision increased to 0.01°C, with range –99.99 to 99.99.

13) ARCR Author reference code – Rean-qc

The author reference code is an optional alphanumeric value that is intended to point to a publication or technical report describing the reanalysis QC/feedback provided in the *Rean-qc* attm. The following *ACRC* has been assigned:

PH13 – ERA-20C, 2013 (Poli, P., H. Hersbach, D. Tan, D. Dee, J.-N. Thépaut, A. Simmons, C. Peubey, P. Laloyaux, T. Komori, P. Berrisford, R. Dragani, Y. Trémolet, E. Holm, M. Bonavita, L. Isaksen and M. Fisher, 2013: The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the 20thcentury assimilating surface observations only (ERA-20C). ERA Report Series no. 14, ECMWF, 59 pp.

14) CDR Creation date – Rean-qc

Date conforming to ISO 8601 (YYYYMMDD) that identifies when the reanalysis QC/feedback for the given record was created. Set by the external developer that produced the *Rean-qc* attm.

15) ASIR Access status indicator – Rean-qc

An indicator of the status of the access to the record within ICOADS, such that only active records are still available within ICOADS:

- 0 Active
- 1 Inactive

ICOADS Value-Added Database (*Ivad*) attm (C96)

<u>1) ATTI attm ID</u>

2) ATTL attm length

Each attm begins with ATTI and ATTL. ATTI identifies the attm contents with a numeric identifier (ATTI=96 for Ivad), and ATTL provides the total length of the attm (including ATTI and ATTL) in bytes (ATTL=53 for Ivad).

ICOADS value-added data and metadata elements

3) ICNI Input component number-Ivad

Component within the IMMA record for which the value-added data, uncertainties, and/or quality control applies (e.g., 0=*Core* or appropriate *ATTI* for other attm).

4) FNI Field number - Ivad

Field number from the referenced IMMA component (*ICNI*) for which the value-added data, uncertainties, and/or quality control applies (e.g., for sea temperature in the *Core*, FNI = 35 and for sea temperature from the *Nocn*, FNI = 3).

5) JVAD Scaling factor for VAD

Scaling factor applied to convert "*FVAD*," an input floating-point value, into *VAD* (i.e., representing also *VAU1*, *VAU2*, or *VAU3*) according to $VAD = FVAD \times 10^{JVAD}$. Then the original un-scaled value is reconstructed according to $FVAD = VAD \times 10^{-JVAD}$.

[Note: Future versions of IMMA may lower the max to a value more likely to be realistic considering current data characteristics, e.g., 5 (i.e., scaling factor max becomes 10^5 , thus again taking the *AT* case numeric precision of *FVAD* becomes 0.00001°C).]

6) VAD Value-added data value

Adjusted data value (e.g., bias-corrected) associated with field defined by *ICNI* and *FNI*. Background: The adjusted value will be stored in this *Ivad* attm, whereas the unadjusted data will be stored in the *Core*/other attms as noted by *ICNI* and *FNI*. *VAD* units are inherited from *ICNI* and *FNI* (e.g., *ICNI*=0 and *FNI*=29 refer to *AT*, which has units of °C); the scaled range and the numeric precision is determined (e.g., at run time by {rwimma1}) from the scaling factor (e.g., taking the *AT* case: *JVAD*=0 yields whole °C, *JVAD*=1 yields 0.1°C, *JVAD*=2 yields 0.01°C, etc.). [Note that the storage of the adjusted value in this attm is an inversion of the planned handling, after blending into ICOADS, of straightforward data corrections using the *Error* attm (see Table C97).]

7) IVAU1 Type indicator for VAU1	
----------------------------------	--

<u>8) JVAU1</u>	Scaling factor for VAU1
9) VAU1	Uncertainty of type IVAU1
10) IVAU2	Type indicator for VAU2
11) JVAU2	Scaling factor for VAU2
12) VAU2	Uncertainty of type IVAU2
13) IVAU3	Type indicator for VAU3
14) JVAU3	Scaling factor for VAU3
15) VAU3	Uncertainty of type IVAU3

Indicators *IVAU1, IVAU2, IVAU3* defined the type of uncertainty provided:

- 0 To be determined in prototype
- 1 To be determined in prototype

Scale factor *JVAU1*, *JVAU2*, *JVAUE* for *VAU1*, *VAU2*, *VAU3*, respectively, and defined identically to *JVAD*.

- Uncertainty, VAU1, VAU2, and VAU3, associated with field defined by ICNI and FNI. Background: Uncertainty value units are inherited from ICNI and FNI (e.g., ICNI=0 and FNI=29 refer to AT, which has units of °C); the scaled range is as specified, and the numeric precision is determined (e.g., at run time by {rwimma1}) from the scaling factor (e.g., taking the AT case: JVAU1=0 yields whole °C, JVAU1=1 yields 0.1°C, JVAU1=2 yields 0.01°C, etc.).
- 16) VQC Value-added quality control flag

The VQC is designed to store externally derived and provided data QC information. The provider of QC information is required to map their flags to the VQC configuration (Table C96a) and describe their mapping method in external documentation as linked via *ARC* (also original QC flags, prior to mapping to VQC, can be stored in the *Suppl* attm together with original data).

Table C96a. Configuration of the value-added QC Flag (*VQC*), following primary-level quality flag (QF) codes and definitions from IOC (2013)¹, which also recommends that any QC tests must be well documented in metadata that accompany the data.

<u>Cod</u>	e Primary level flag's short name	<u>Definition</u>
1	Good	passed documented required QC tests
2 ²	Not evaluated, not available or unknown	used for data when no QC test performed or the information on quality is not available
3	Questionable/suspect	failed non-critical documented metric or subjective test(s)
4	Bad	failed critical documented QC test(s) or as assigned by the data producer
9	Missing data	used as placeholder when data are missing

1. IOC, 2013: Ocean Data Standards, Vol. 3: Recommendation for a Quality Flag Scheme for the Exchange of Oceanographic and Marine Meteorological Data. IOC Manuals and Guides 54, Vol. 3., 12 pp. (English.)(IOC/2013/MG/54-3).

[http://www.iode.org/index.php?option=com_oe&task=viewDocumentRecord&docID=10762].

2. Explanation for the placement of flag value 2, from IOC (2013): 'The quality of verified "Good" (flag 1) is considered higher (smaller flag value) compared to "Not evaluated" (flag 2), as the latter could turn out to be of any quality from good to bad, once the quality checks have been performed. Consequently, the neutral "Not evaluated" (flag 2) is placed between verified "Good" and verified "Questionable/suspect".'

17) ARCI Author reference code – Ivad

The author reference code is a required alphanumeric value that is intended to direct the user to a publication or technical report describing value-added data, uncertainties, and/or quality control provided in the *Ivad* attm. The *ARCI* values defined for the IVAD prototype are the following:

BKT – National Oceanography Center, Berry, Kent, and Taylor, created 2015 FS01 – Florida State University, Smith et al. 2015

18) CDI Creation date – Ivad

Date conforming to ISO 8601 (YYYYMMDD) that identifies when the value-added data, uncertainties, and/or quality control for the given record was created. Set by the external developer that produced the *Ivad* attm.

19) ASII Access status indicator – Ivad

An indicator of the status of the access to the *Ivad* record within ICOADS:

- 0 Active
- 1 Inactive

Error (*Error*) attm (C97)

<u>1) ATTI attm ID</u>

2) ATTL attm length

Each attm begins with ATTI and ATTL. ATTI identifies the attm contents with a numeric identifier (ATTI=97 for Error), and ATTL provides the total length of the attm (including ATTI and ATTL) in bytes (ATTL=32 for Error).

Corrected erroneous data and metadata elements

3) ICNE Input component number-Error

Component within the IMMA record for which corrected erroneous data or metadata applies (e.g., 0=*Core* or appropriate *ATTI* for other attm).

4) FNE Field number – Error

Field number from the referenced IMMA component (*ICNE*) for which the error correction applies (e.g., for sea temperature in the *Core*, FNE = 35 and for sea temperature from the *Nocn*, FNE = 3).

5) CEF Corrected or erroneous field flag

An indicator of whether or not the *ERRD* field contains the corrected or uncorrected value. 0 - *ERRD* is the corrected value

1 - ERRD is the uncorrected value

Background: It is envisioned that when external providers submit *Error* attm, they will provide the corrected value in the attm and set *CEF=0*. To simplify the user interface, corrections for straightforward errors (e.g., callsign garbling) will ultimately be stored by ICOADS in the *Core*/other attms, whereas uncorrected data will be stored in this *Error* attm—this is an inversion of the planned handling of bias adjustments using the *Ivad* attm. The swapping of the information from externally provided *Error* attms, to final inverted storage in IMMA1 (i.e., from *CEF=*0 to *CEF=*1, and interchanging the data fields), will likely be handled by the ICOADS data team at NCEI; however, the *CEF* flag settings should allow this inversion to be handled externally instead if desired (i.e., through the provision of both Main and Subsidiary records).

6) ERRD Corrected or uncorrected value

Adjusted data value (e.g., bias-corrected) associated with field defined by *ICNE* and *FNE*. Background: The numeric precision and units of measurement are inherited from *ICNE* and *FNE*. [Note: In {rwimma1}, the *Min.* and *Max.* of *ERRD* are initialized to character (i.e., "c" and "c") but these values are changed to "(*inh.*)" after *ICNE* and *FNE* are known. Moreover, all fields are right-justified, e.g., *ID* is left-justified in *ERRD* characters two through ten.]

7) ARCE Author reference code – Error

The author reference code is a required alphanumeric value that is intended to direct the user to a publication or technical report describing error correction provided in the *Error* attm. At the time of R3.0, no *Error* attm had been created.

8) CDE Creation date – Error

Date conforming to ISO 8601 (YYYYMMDD) that identifies when the <u>error correction</u> for the given record was created. Set by the external developer that produced the *Error* attm.

9) ASIE Access status indicator – Error

An indicator of the status of the access to the *Error* record within ICOADS:

- 0 Active
- 1 Inactive

Unique report identifier (*Uida*) attm (C98)

1) ATTI attm ID

2) ATTL attm length

Each attm begins with *ATTI* and *ATTL*. *ATTI* identifies the attm contents with a numeric identifier (*ATTI*=98 for *Uida*), and *ATTL* provides the total length of the attm (including *ATTI* and *ATTL*) in bytes (*ATTL*=15 for *Uida*).

Report elements

3) UID Unique report identifier (ID)

A unique ID for each record in ICOADS represented as a base36 number of length 6. Development considerations for *UID* are discussed in Annex B of Woodruff et al. (2015; <u>http://icoads.noaa.gov/ivad/IMMA-Rev.pdf</u>).

Background: The *intermediate* Release 2.5 product (R2.5*i*), containing available duplicates and other reports excluded from the normal user product (R2.5), was used as the starting point for assigning *UID*. R2.5*i* contains ~295M (specifically: 294,725,525) reports ($m_{R2.5i}$), so all those records (in predefined temporal archive sequence) had *UID* assigned from 1, ..., $m_{R2.5i}$. During preparation of R3.0, new and historical records were numbered starting from $m_{R2.5i}$ +1 to $m_{R3.0t}$ (specifically 1,233,945,192; where the "t" subscript refers to the *total* file output from R3.0). After blending the old and new records into R3.0, all the *UIDs* are no longer sequential (i.e., new *UIDs* have been interleaved into the old purely numeric sequence; see http://icoads.noaa.gov/ivad/IMMA-Rev.pdf for further discussion).

While *UID* is a base36 number, this field is handled by {rwimma1} as strictly (i.e., without leading spaces, e.g., 35=00000Z) alphanumeric, and thus is not fully translated into an integer or floating-point (REAL) number (ref. {rwimma1} comments: "For character [...] fields, note that ITRUE and FTRUE contain the ICHAR of the first character of the field..."). Separate from {rwimma1} however, this Fortran library is available to transform *UID* into an integer (and vice versa): http://icoads.noaa.gov/software/base36.f. Users interested in handling *UID* as a number should be aware of possible finite precision issues arising in the representation of large numbers on computers:

- In the integer case, the largest 6-character base36 number is ZZZZZZ (2,176,782,335); however, if one bit is reserved for sign, the largest positive integer representable in 32 bits is only 2^{31} –1 (2,147,483,647; ZIK0ZJ in base36). However, the current maximum of *UID* is $m_{R3.0t}$ (~1.234B) and thus below this threshold.
- Whereas, in the floating-point case it is not even possible to accurately represent $m_{R3.0t}$ as a 32-bit single precision REAL number.

5) RN1	Release number: primary
6) <i>RN</i> 2	Release number: secondary

7) RN3 Release number: tertiary

Three elements that make up the full release number associated with the record. For example, Release 3.0.0 (1662-2014) is represented with RN1=3, RN2=0, and RN3=0, and R3.0.1 (the 2015-forward GTS blend product, providing a NRT preliminary extension to R3.0) with RN1=3, RN2=0, and RN3=1

Background: A uniform policy on the usage of these Release number digits has yet to be developed, but the primary number is envisioned to change only at major full-period Releases, the secondary number at noteworthy incremental Releases, and the tertiary number can describe subsequent Releases associated with a major or incremental Releases (e.g., R3.0.1, R3.1.1).

8) RSA Release status indicator

An indicator that specifies whether the record is

0 – Preliminary (Not yet included in an official ICOADS Release)

1 – Auxiliary (Records provided in separate data files in addition to ICOADS official Releases and Preliminary data. This also includes new data sources received, but awaiting blending into an official ICOADS Release)

2 – Full (A record included in an official ICOADS Release)

9) IRF Intermediate reject flag

A flag assigned during processing of a release to indicate whether each report is to be rejected or retained during construction, from the Total output dataset, of the Final user dataset, and also flagging the potential construction of an Intermediate dataset (note: not implemented presently for R3.0, only the Total and Final datasets are available). Values are:

0 – Intermediate (i.e. Retain in Intermediate data file, reject from Final dataset)

1 – Final (i.e. Retain in both Intermediate and Final datasets)

2 – Reject (i.e. Reject from both Intermediate and Final datasets)

Supplemental data (Suppl) attm (C99)

<u>1) ATTI</u>	attm ID
----------------	---------

2) ATTL attm length

3) ATTE attm data encoding

5) SUPD supplemental data

Each attm begins with *ATTI* and *ATTL*. *ATTI* identifies the attm contents, and *ATTL* was allocated (but is presently unused, see below) to provide the total length of the attm (including *ATTI* and *ATTL*) in bytes, or zero for length unspecified (record terminated by the ASCII line feed character; line feed not counted as part of *ATTL*; note all IMMA data from R3.0 currently follow this form). The supplemental data attm (C99) also includes *ATTE*, which indicates whether the supplemental data that follow are in ASCII or encoded:

missing – ASCII

0 – base64 encoding

1 – hexadecimal

The {rwimma1} software tests to determine if each individual IMMA record is properly configured, without checking *ATTC* (ref. Table C0) against the number of attachments present. Also, {rwimma1} sets *ATTC* when an IMMA is written, and it allows duplicate attms (i.e., two attms with the same *ATTI*) to appear in a record, but the second overwrites the first (i.e., in memory) unless they are one of the two-dimensional (i.e., *Rean-qc, Ivad, Error*) attms. The software does not require that attachments appear in any particular order

by *ATTI*, with one exception: the supplemental data attm must be the final attm within the record with *ATTL*=0.

Background: Thus far, *ATTL* in bytes has not been supported in the read/write IMMA programs (e.g., {rwimma1}). Also thus far, *ATTE*=1 (hexadecimal) has been used only for MORMET (deck 732) data (to represent binary input). This printable representation, which {rwimma1} treats identically to ASCII, was undocumented in previously available (i.e., IMMA0) Suppl. D information. In addition, while the *ATTE*=0 (base64 encoding; unprintable) representation is documented in Supp. D, currently it is unused and not fully implemented in {rwimma1}.

Supplement E: ICOADS Release 3.0 IMMA Status

This supplement provides additional technical information on the IMMA1 implementation presently used for Release 3.0 (R3.0.0; 1662-2014), plus for monthly "preliminary" data (based on a blend of NCEP and NCEI GTS receipts) extending ICOADS to near-current dates (R3.0.1; 2015-forward). Also discussed is an alternative "Total" output product derived during the creation of R3.0 that some users may wish to access.

New to R3.0 is the implementation of the IMMA1 linked report format, which includes Main and (optional) Subsidiary records, linked together by the unique record identifier (stored in the *Uida* attm). From this approach, the main records may include (see Table E1 for more information about the individual format components):

Main IMMA record: Core + Icoads + Immt + Mod-qc + Meta-vos + Nocn + Ecr + Uida + Suppl

which contains (if all attms are present) 542 characters prior to the variable-length *Suppl*. However, the attachment structure of IMMA (and {rwimma1} software) is designed with the capability to save space through omission of empty attachments (i.e., information not relevant, or not available, for a given dataset). Since we utilize this feature for the main ICOADS records, they may frequently be shorter than 510 characters (e.g. the *Meta-vos* and *Ecr* attms in general are only available for VOS data).

During development of R3.0, ICOADS developed a method to blend GTS data streams from NCEI and NCEP, which will support the near-real-time (NRT) extension of R3.0 from January 2015 to present (updated monthly, up to five days into the next month, and referred to as R3.0.1). In 2007 NCEP began masking all ship call signs, and this product recovers up to 70% of the actual ship radio call signs by blending the NCEI stream. Additionally, approximately 5% unique reports are gained from the merge. More information on this product can be found at http://icoads.noaa.gov/merge.html.

Also available to the user community will be the newly created "Total" output. This product includes available duplicates and landlocked reports, flagged so that they could be readily removed when creating the "Final" R3.0 user product. The Total product additionally contains reports that were rejected during the initial processing because of known and documented errors. R3.0 contains a number of known unresolved inhomogeneities and data mixture problems (Freeman et al. 2016; <u>http://icoads.noaa.gov/r3.html</u>). Particularly for some of the data mixture issues, the Total product is available for further study or potentially to develop improved solutions.

For example, WMO–No. 47 (1955–) metadata (Berry et al. 2009) were blended into the Total product, partly in recognition that in some cases only duplicates not selected for final output received the metadata (e.g., due to the lack of a ship callsign in duplicates selected for final output). Another incompletely resolved R3.0 issue for which the total file could be utilized concerns the VOSClim data and metadata, which have not yet been practical to provide in the form of a fully merged dataset (e.g., possibly bringing elements from the GTS and logbook reports, together with the Table C6 (*Mod-qc* attm) feedback information, into composited reports).

Following the release of R3.0 in June 2016, enhancements of R3.0 are planned as resources permit. Most immediately, we plan to add *Rean-qc* attms from at least one reanalysis project, and *Ivad* attms from the pilot IVAD project. Longer-term, quality control

improvements and other enhancements to ICOADS are needed as soon as practical (as discussed further in Freeman et al. 2016). These additional format elements are also reflected in Table E1.

Table E1. Sizes of IMMA1 format components: Core and attachments (attm). We plan to populate C95 and C96 in an incremental release soon following R3.0.0, and while C97 is fully implemented (e.g. in {rwimma1} it is not yet in use but proposed for use in a future release.

			<u>Cumulative</u>	<u>Comments</u>
<u>Abbrev.</u>	<u>Name</u>	<u>Size (B)</u>	<u>size (B)</u>	
C0	Core (<i>Core</i>)	108	108	
C1	ICOADS (Icoads) attm	65	173	
C5	IMMT5/FM 13 (Immt) attm	94	267	
C6	Model quality control (Mod-qc) attm	68	335	
C7	Ship metadata (<i>Meta-vos</i>) attm	58	393	From WMO–No. 47 for 1966-2014; plus from COAPS (deck 740) ²
C8	Near-surface oceanographic (<i>Nocn</i>) attm	102	495	
C9	Edited cloud report	32	527	
C98	Unique report ID (<i>Uida</i>) attm	15	542	
C99	Supplemental data (Suppl) attm ¹	variable		
C95	Reanalysis QC/feedback (<i>Rean-qc</i>) attm	61	603	To be populated soon after R3.0 in a subsequent release
C96	ICOADS Value-Added Database (<i>Ivad</i>) attm	53	656	To be populated soon after R3.0 in a subsequent release
C97	Error (<i>Err</i>) attm	32	688	Available for future use

1. For ICOADS Release 2.4, 1784-1997 IMMA were recreated using LMR to merge important supplemental data into the *Suppl* attm (previously "C6," now C99). As resources permit, and as the IMMA format evolves to include additional fields, those and more recently received supplemental data should be tapped for regular fields not previously defined in ICOADS but becoming available in IMMA (e.g. sea ice fields), or planned for availability in IMMA in historical attm (e.g. Beaufort wind force numbers). 2. The WMO–No. 47 metadata were blended into the "Total" R3.0 product (see Table E2) as was done for R2.5 (see Berry et al. 2009), whereas the COAPS metadata were retained from the R2.5.1 input for DCK 740, *SID*=130 (1990-1998) and added to R3.0 for DCK 740, *SID*=131 (2005-2014).

Table E2. Numbers of reports and data volumes for the "Total" and "Final" user products output from R3.0.0. The Total product is a superset of the Final product, in that it also contains flagged duplicates, landlocked reports, and some flagged erroneous "Reject" data. Total product sizes (10⁹ bytes) are uncompressed.

Product	<u>Period</u>	<u>Reports</u>	Total product size
Final	1662-2014	455,528,938	149 GB
Total	1662-2014	1,009,511,934	390 GB

Supplement F: Proposed IMMA Attachments

This supplement contains IMMA attachments that are proposed or in development. None of these attachments have been implemented in IMMA1 or in {rwimma1}. Notes related to the proposed attm development are included below each table, with specific fields in the proposed *Hist* attachment fleshed out in additional detail below Table CP5.

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Min.</u>	<u>Max.</u>	<u>Units (Code) [base36]</u>
1	2	ATTI	attm ID			Note: set ATTI=(tbd)
2	2	ATTL	attm length			Note: set ATTL=41
			Automated instrumental metadata (37 characters):			
3	8	ALAT	latitude	-90.000	90.000	0.001°N
4	9	ALON	longitude	0.000	359.999	0.001°E (ICOADS conv.)
5	1	INAV	navigation system indicator	0	9	(controlled vocabulary <i>tbd</i> , e.g., 0=GPS, 1=POSMV, 2=INS)
6	6	APRS	atmospheric pressure	870.00	1074.60	at barometer height (HOB)
7	6	ARSW	shortwave radiation	0.00	1600.00	Wm ⁻²
8	1	IARSW	shortwave radiation indicator	0	9	(controlled vocabulary <i>tbd</i> , e.g., 0=down-, 1=upwelling)
9	5	ARLW	longwave radiation	200.00?	800.00?	Wm ⁻²
10	1	IARLW	longwave radiation indicator	0	9	(controlled vocabulary <i>tbd</i> , e.g., 0=down-, 1=upwelling)

Table CP1. Automated instrumentation (Auto) attm (proposed)

Auto attm notes:

This attm is designed to provide a location to capture meteorological and underway ocean data that are not routinely reported by VOS or in historical ship reports. These values would be derived from automated instrumentation.

This attm could be expanded to include all possible parameters that could be derived at high precision from automated instrumentation. Candidate fields that are included elsewhere in IMMA0 are: Ship's course and speed (*DS/VS*, in the *Core*; or *COG/SOG* for the over ground elements, in *Immt*), and ship's heading (*HDG* in *Immt*), wind direction and speed (true *D/W*, in the *Core*; or relative *RWD/RWS* in *Immt*), *AT*, *WBT*, *DPT* (*Core*), and *RH* and precipitation (*Immt*). Other possible fields for this table include visibility and cloud height derived from automated sensors, but they are currently very rare on ships or moorings, or possibly surface velocity data (not presently part of ICOADS).

For *ARSW*, it is still not determined if the field should allow for negative values. They are common due to sensor calibration issues (and flagged e.g., by SAMOS), but are not physical.

Storing *APRS* is proposed for two reasons (a) there is no place in IMMA to store atmospheric pressure values not converted to sea level and (b) precision automated barometers can easily record *SLP* (or *APRS*) to 2 or 3 decimal places. However, if the field serves two purposes, an associated indicator may be needed to flag the high-resolution pressure type (i.e., *SLP* or *APRS*)

Radiation could be handled in different ways. The idea above provides for separate shortwave/longwave total radiation variables. If we added a signed range, this could also allow for net radiation. Another other option would allow for multiple radiation values each with an indicator stating whether it is shortwave, longwave, PAR, UV, etc. This may result in a variable-length attachment or one of fixed-length with many empty fields. Also, some indicator of the time period over which the radiation was integrated may be needed. The draft E-SURFMAR Dataformat#100

(<u>http://esurfmar.meteo.fr/doc/o/vos/E-SURFMAR_VOS_formats_v011.pdf</u>) suggests "over the past hour."

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Min.</u>	Max.	<u>Units (Code) [base36]</u>
1	2	ATTI	attm ID			Note: set ATTI=(tbd)
2	2	ATTL	attm length			Note: set ATTL=28
			Ū			
			Near-surface oceanographic QC and calibration information (24 characters):			
1	1	OQCI	quality control indic.1	0	9	(Same as QCI in Table C5)
2	1	OQCFL	QC flag list ²	u	u	(tbd)
3	1	OTQC	OTV (temp.) QC flag	0	9	(tbd)
4	1	OTCI	OTV calibration indic.	0	9?	(tbd) ³
5	1	OSQC	OSV (salinity) QC flag	0	9	(tbd)
6	1	OSCI	OSV calibration indic.	0	9?	(tbd)
7	1	OOQC	OOV (oxygen) QC flag	0	9	(tbd)
8	1	00CI	OOV calibration indic.	0	9?	(tbd)
9	1	OPQC	OPV (phosphate) QC flag	0	9	(tbd)
10	1	OPCI	OPV calibration indic.	0	9?	(tbd)
11	1	OSIQC	OSIV (silicate) QC flag	0	9	(tbd)
12	1	OSICI	OSIV calibration indic.	0	9?	(tbd)
13	1	ONQC	ONV (nitrate) QC flag	0	9	(tbd)
14	1	ONCI	ONV calibration indic.	0	9?	(tbd)
15	1	OPHQC	OPHV (pH) QC flag	0	9	(tbd)
16	1	OPHCI	OPHV calibration indic.	0	9?	(tbd)
17	1	OCQC	OCV (total chlor.) QC flag	0	9	(tbd)
18	1	OCCI	OCV calibration indic.	0	9?	(tbd)
19	1	OAQC	OAV (alkalinity) QC flag	0	9	(tbd)
20	1	OACI	OAV calibration indic.	0	9?	(tbd)
21	1	OPCQC	OPCV (PaC02) QC flag	0	9	(tbd)
22	1	OPCCI	OPCV calibration indic.	0	9?	(tbd)
23	1	ODQC	ODV (DIC) QC flag	0	9	(tbd)
24	1	ODCCI	ODV indic.	0	9?	(tbd)

Table CP2. Near-surface oceanographic QC (Nocq) attm (proposed).

1. Proposed as an overall QC method flag, the same as *QCI* in the *Immt* attm, which has this configuration: 0 - No guality control (QC)

1 - Manual QC only

2 - Automated QC only /MQC (no time-sequence checks)

3 - Automated QC only (inc. time sequence checks)

4 - Manual and automated QC (superficial; no automated time-sequence checks)

5 - Manual and automated QC (superficial; including time-sequence checks)

6 - Manual and automated QC (intensive, including automated time-sequence checks)

7 & 8 - Not used

9 - National system of QC (information to be furnished to WMO)

2. Proposed indicator that points to different QC flag schemes (e.g., the ODS-based scheme as listed in Table C96a).

3. As agreed at the April 2013 UK EarthTemp meetings, it appears we need at least 4 configurations: (0) not calibrated, (1) calibrated, (2) bottle calibrated, (3) others.

Nocq attm notes:

QC flags and calibration information paralleling the data value (and accompanying depth) fields in the *Nocn* attm (Table C8).

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Min.</u>	<u>Max.</u>	<u>Units (Code) [base36]</u>
1	2	ATTI	attm ID			Note: set ATTI=(tbd)
2	2	ATTL	attm length			Note: set ATTL=18
3	2	ICNQ	Alternative QC information (14 characters): input component number-Alt-qc	0	(tbd)	IMMA component number
4	6	FNQ	field number-Alt-qc	1	(tbd)	IMMA field no. within ICNQ
5	1	AQCFL ¹	QC flag list	u	u	(tbd; possibly [b36])
6	1	QCFV	QC flag value	0	9	(tbd; possibly [b36])
7	4	ARCQ	author reference code– Alt-qc	b	b	(alphanumeric)

Table CP3. Alternative QC (Alt-qc) attm (proposed).

1. See OQCFL in the Nocq attm (Table CP2).

Alt-qc attm notes:

Envisioned as a means by which data providers could provide QC flag information on a flexible basis, akin to the *Error* attm, but for additional quality control flags for any field number in any attm. The intent of the QC flag list is to allow users to submit data using a range of QC flagging schemes (e.g., 0-9, A-Z, etc). This could be supported by using base36 representation. May also want to consider need for length>1 for the *QCFV*.

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Min.</u>	<u>Max.</u>	Units (Code) [base36]
1	2	ATTI	attm ID			Note: set ATTI=(tbd)
2	2	ATTL	attm length			Note: set ATTL=(tbd)
			Platform track information (~25 characters):			
3	1?	UIDT	UID type			(<i>tbd</i> ; e.g., 1=ICOADS- standard, 2=collection/ <i>SID</i> - specific,3=platform/voyage- specific)
4	6	UID1	UID of previous report	1	(tbd)	
5	6	UID2	UID of this report	1	(tbd)	
6	6	UID3	UID of next report	0	(tbd)	
7	4	ARCT	author reference code– <i>Track</i>	b	b	(alphanumeric)

Table CP4. Platform tracking (Track) attm (proposed).

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Min.</u>	<u>Max.</u>	<u>Units (Code) [base36]</u>
8	8	CDT	creation date—Track	201401 01	2nnn12 31	ISO-8601, YYYYMMDD (as for <i>CDR</i> , ref. Table C95)
8	1	ASIT	access status indic.— <i>Track</i>	0	1	0=active, 1=inactive

Track attm notes:

Sets aside space for "pointer" fields indicating the UID of the previous (*UID1*) and next (*UID3*) report, with respect to this report (*UID2*), in ship/buoy track sequence (i.e., both forward, and backward, in time and space). If indicated by *UIDT*, this attm could contain collection- (or source ID, *SID*) specific, or even platform/voyage-specific, rather than ICOADS-standard, *UID* information (which thus in a sense can be considered value-added information, if assembled externally).

This could be very useful e.g., for reanalyses to resolve the problem of connecting ship/buoy voyages within ICOADS. Due to effects of dupelim, tracks may consist of records interspersed from a variety of sources, with possibly varying *IDs* for records in track sequence. This proposed attm would provide the storage mechanism for this information, but populating the attm seems likely to be challenging; therefore, as with the *Ivad* attm, ICOADS might consider the *Track* to be metadata and possibly this info could be ingested if somebody else had the resources to implement the ship tracking.

No.	Len.	Abbr.	Element description	<u>Min.</u>	Max.	Units (Code) [base36]
<u>110.</u>	<u>Len.</u>	<u>A001.</u>	<u>Element description</u>	<u>IVIII I.</u>	<u>IVIAX.</u>	<u>Omis (Oode) [base30]</u>
1	2	ATTI	attm ID			Note: set ATTI=(tbd)
2	2	ATTL	attm length			Note: set ATTL=(tbd)
			Historical data fields (>19 characters):			
3	?	SN	ship's name	u	u	[Note: either the full name, or possibly abbreviated with reference to a separately maintained list, to same space?]
4	5	LCR	longitude by chronometer	0.00	359.99	0.01°E ¹ (ICOADS conv.)
5	5	LMG	longitude made good ²	0.00	359.99	0.01°E ¹ (ICOADS conv.)
6	5	LDR	longitude by account ³	0.00	359.99	0.01°E ¹ (ICOADS conv.)
7	1	WFI	WF indic.	u	u	
8	2	WF	wind force	0	12	
9	1	XWI	XW indic.	u	u	
10	3	XW	wind speed (ext. W)	0	99.9	0.1 m/s
11	1	XDI	<i>XD</i> indic.	u	u	
12	2	XD	wind dir. (ext. D)	u	u	
13	1	SLPI	SLP indic.	u	u	[Note: This or another indicator needed to indicate the presence or absence of <i>SLP</i> adjustment (ref. <i>PB</i>)?]
14	1	TAI	TA indic.	u	u	
15	4	TA	SLP att. thermometer	-99.9	99.9	ref. AT
16	5	SMPR	sympiesometric pressure	25.000	32.000	0.001 inches of mercury ⁴
17	1	XNI	XN indic.	u	u	-
18	2	XN	cloud amt. (ext. N)	u	u	
19	1	SGN	significant cloud amount	0	9	(Ns; ref. Table B4)

Table CP5. Historical attm (Hist) (proposed).

<u>No.</u>	<u>Len.</u>	<u>Abbr.</u>	Element description	<u>Min.</u>	<u>Max.</u>	<u>Units (Code) [base36]</u>		
20	1	SGT	significant cloud type	0	9, "A"	(C; ref. Table B4)		
21	2	SGH	significant cloud height	0	99	(h _S h _S ; ref. Table B4)		
(plus a	(plus additional elements tbd)							

1. A possible alternative approach for storing these longitudes, such as from the EEIC collection, would be to keep the DDD.MM.SS original format, noting however that original data configurations should be preserved anyway in the *Suppl* attm. Also storing decimal points would violate the standard IMMA representation for numeric data (unless these fields were stored as character strings).

2. With reference to Greenwich Meridian.

3. As calculated by dead reckoning.

4. Due to the erratic nature of the symplesometer measurements such as observed in the EIC Collection, these values might fall well out of the range specified here.

Preliminary definitions of fields for within the proposed Hist attm (Table CP5):

1) ATTI attm ID

2) ATTL attm length

Each attm begins with ATTI and ATTL. ATTI identifies the attm contents with a numeric identifier (ATTI=tbd), and ATTL provides the total length of the attm (including ATTI and ATTL) in bytes (ATTL=tbd).

Historical data fields (field numbering preliminary)

3) SN ship's name

4) LCR longitude by chronometer

5) LMG longitude made good

6) LDR longitude by account

7) WFI wind force indicator

8) WF wind force

9) XWI XW indicator

10) XW wind speed (extension field for W)

11) XDI XD indicator

12) XD wind direction code (extension field for D)

WFI and *WF* are proposed primarily for 0-12 Beaufort wind force codes, but potentially could be extended to other 2- or 1-digit codes, with *WFI* indicating the type of information, e.g., 0-6 (half Beaufort code in 19th century Norwegian logbooks), Ben Nevis Observatory code. *XWI* and *XW* are proposed for equivalent wind speed, with *XWI* indicating the scale used to convert from *WF* (e.g., the existing WMO Code 1100 scale or newer alternatives). Similarly, fields *XDI* and *XD* are proposed for older 2- or 1-digit wind direction codes, with *XDI* indicating the type of information, e.g., 32-, 16-, or 8-point compasses.

13) SLPI SLP indicator

14) TAI TA indicator

15) TA SLP attached thermometer

SLPI is proposed for historical data to indicate the barometer type (e.g., mercurial, aneroid, or metal). *TAI* (configuration undecided, but probably similar to some of the other temperature indicators) and *TA* are proposed for older mercurial barometer data, in which the attached thermometer is critical for data adjustments.

16) SMPR Symplesometric pressure

17) XNI XN indicator

18) XN cloud amount (extended field for N)

XN is proposed for historical cloud amount data (e.g., in tenths), with XNI indicating the units (e.g., tenths).

19) SGN significant cloud amount

20) SGT significant cloud type

21) SGH significant cloud height

Use of "A" (10 in base36) in place of "/."

Background: These significant cloud fields are listed in Met Office (1948), but appear to have been omitted from regular IMM fields (see Table B4) and the current FM 13 code; in presently available ICOADS data they should always be missing [Note: Since these appear to be strictly historical fields, deletion from this attachment and possible repositioning within Table C5 is suggested for future consideration).]

Hist attm notes:

Fields *SGN*, *SGT*, and *SGH*, which are believed to be purely historical (1960s or earlier), are moved here from the *Immt* attm. Refer to the complete version of the IMMA0 documentation (<u>http://icoads.noaa.gov/e-doc/imma/R2.5-imma.pdf</u>) and Table B4. Among potential additional elements: dead reckoning positions (if preserved additionally to observed positions) and surface current movement (derivable from dead reckoning positions), Leeway, magnetic deviation and variation, etc.

Other examples from recent work on the C19th German Maury Collection:

			Cloud form:			
Cirr	us	CI	Cirrocumulus	s CC	Cirrostratus	CS
Alto	cumulus	AC	Altostratus	AS		
Stra	atocumulus	SC	Stratus	ST	Nimbostratus	NS
Cur	nulus	CU	Cumulonimb	us CB		
Pre	sent Weather	indicated by o	combinations	of the follo	wing Beaufort Code	2 5:
b	blue sky		р	pass	ing showers	
С	cloudy sky		q	squa	lly	
d	drizzle		r	rain,	rainy	
f	fog		S	snov	V	
g	gloomy		t	thun	der	
h	hail		u	ugly	threatening sky	
Ι	lightning		v	exce	ptional visibility	
m	mist		W	dew		
0	overcast, over	ercast skies	Z	haze	•	

Additional historical fields, such as sea state and sea ice

will have to be investigated further to determine the feasibility of incorporating them in IMMA. Historically, these are largely non-standardized recordings, recorded in comments possibly embedded in large amounts of text (e.g., greater than 1500 unique state of sea and weather comments in the EEIC collection).

Document Revision Information

First draft version: 20 May 2016. This report is a major update of <u>http://icoads.noaa.gov/e-doc/imma/R2.5-imma.pdf</u> and contains information regarding ICOADS Release 3.0 in IMMA1 format, with additional information and clarifications added since the initial draft version.

Second draft version: 16 June 2016. Updates to DCK/SID Tables 6a-c,7 and additional text edits.

Third draft version: 29 June 2016. Updates to DCK Table 6c.

Fourth draft version: 14 July 2016. Updated Freeman et al. (2016) reference to include DOI. Removed "[in preparation]" notes from references to *R3.0-stat_trim* (http://icoads.noaa.gov/e-doc/R3.0-stat_trim.pdf). For field 49) *QCE* and in Table C1, "MEDS" was changed to "OSD." In Table C1a, noted in the table heading that this is Table 1 in *R3.0-stat_trim* (http://icoads.noaa.gov/e-doc/R3.0-stat_trim.pdf), and corrected table footnotes to agree with *R3.0-stat_trim* (http://icoads.noaa.gov/e-doc/R3.0-stat_trim.pdf). Changes were made in Table D8 to properly describe the handling of DUPS in R3.0 processing.

Fifth draft version: 15 September 2016: Correction in Table C1a in the Units wording associated with *ZE*, "NCDC" changed to "OSD." Minor updates in the Introduction, and minor updates/corrections in Tables B1 and D6a, and in the Background information for *UID*. A variety of additional minor editorial and format adjustments was also completed prior to final publication. Also updated Supplement E to include tables E1 and E2. Hyperlinks were added to *R3.0-stat-trim* documentation available on the ICOADS website.

Sixth draft version: 28 October 2016: Update to Table C98 to update RN numbers to current version: RN1=2, RN2=5, RN3=0 (i.e. R2.5.0) changed to RN1=3, RN2=0, RN3=0 (i.e. R3.0.0) in the '*Units*' column

Final version: 5 April 2017.