Additional copies of this publication, as well as information about NODC data holdings and services, are available upon request directly from NODC.

National Oceanographic Data Center
User Services Team
NOAA/NESDIS E/OC1
SSMC III, 4th floor
1315 East-West Highway
Silver Spring, MD 20910-3282

Telephone: (301) 713-3277
Fax: (301) 713-3302
E-mail: NODC.Services@noaa.gov
NODC URL: http://www.nodc.noaa.gov/

For updates on the data, documentation, and additional information about the WOA05 please refer to:

http://www.nodc.noaa.gov/OC5/indprod.html

This document should be cited as:

This document is available on-line at http://www.nodc.noaa.gov/OC5/indprod.html
8.4 Appendix D: Maps of the annual distribution of Apparent Oxygen Utilization (AOU) at selected depth levels (Pages 150 to 166). ... 26
8.5 Appendix E: Maps of the seasonal (winter, summer, fall, spring) distribution of Apparent Oxygen Utilization (AOU) and seasonal minus annual distribution of AOU at selected depth levels (Pages 167 to 198). ... 26
8.6 Appendix F: Maps of the monthly distribution of Apparent Oxygen Utilization (AOU) and monthly minus annual distribution of AOU at selected depth levels (Pages 199 to 246). ... 26
8.7 Appendix G: Maps of the annual distribution of oxygen saturation (O_2^S) at selected depth levels (Pages 247 to 262). ... 26
8.8 Appendix H: Maps of the seasonal (winter, summer, fall, spring) distribution of oxygen saturation (O_2^S), and seasonal minus annual distribution of O_2^S at selected depth levels (Pages 263 to 294). ... 26
8.9 Appendix I: Maps of the monthly distribution of oxygen saturation (O_2^S), and monthly minus annual distribution of O_2^S at selected depth levels (Pages 295 to 342). ... 26

List of Figures

Figure 1. Response function of the WOA05, WOA01, WOA98, WOA94, and Levitus (1982) objective analysis schemes. ... 24

Figure 2. Scheme used in computing annual, seasonal, and monthly objectively analyzed means for dissolved oxygen, Apparent Oxygen Utilization (AOU), and oxygen saturation (O_2^S). ... 25

List of Tables

Table 1. Descriptions of climatologies for dissolved oxygen, apparent oxygen utilization, and oxygen saturation in WOA05. ... 20
Table 2. Acceptable distances (m) for defining interior and exterior values used in the reiniger and ross (1968) scheme for interpolating observed level data to standard levels. ... 20
Table 3. Response function of the objective analysis scheme as a function of wavelength for WOA05 and earlier analyses. ... 21
Table 4. Basins defined for objective analysis and the shallowest standard depth level for which each basin is defined. ... 22
Table 5. Statistical fields calculated as part of WOA05. ... 23
List of Maps in The Appendices

Appendix A: Maps of the annual number of observations and distribution of dissolved oxygen (O₂) at selected depth levels (Pages 27 to 50).

Fig. A1. Annual oxygen observations at the surface. .. 27
Fig. A2. Annual oxygen observations at 50 m. depth. ... 27
Fig. A3. Annual oxygen observations at 75 m. depth. ... 28
Fig. A4. Annual oxygen observations at 100 m. depth. ... 28
Fig. A5. Annual oxygen observations at 150 m. depth. ... 29
Fig. A6. Annual oxygen observations at 200 m. depth. ... 29
Fig. A7. Annual oxygen observations at 250 m. depth. ... 30
Fig. A8. Annual oxygen observations at 400 m. depth. ... 30
Fig. A9. Annual oxygen observations at 500 m. depth. ... 31
Fig. A10. Annual oxygen observations at 700 m. depth. ... 31
Fig. A11. Annual oxygen observations at 1000 m. depth. .. 32
Fig. A12. Annual oxygen observations at 1500 m. depth. .. 32
Fig. A13. Annual oxygen observations at 2000 m. depth. .. 33
Fig. A14. Annual oxygen observations at 2500 m. depth. .. 33
Fig. A15. Annual oxygen observations at 3000 m. depth. .. 34
Fig. A16. Annual oxygen observations at 4000 m. depth. .. 34
Fig. A17. Annual oxygen [ml/l] at the surface. ... 35
Fig. A18. Annual oxygen [ml/l] at 50 m. depth. ... 36
Fig. A19. Annual oxygen [ml/l] at 75 m. depth. ... 37
Fig. A20. Annual oxygen [ml/l] at 100 m. depth. ... 38
Fig. A21. Annual oxygen [ml/l] at 150 m. depth. ... 39
Fig. A22. Annual oxygen [ml/l] at 200 m. depth. ... 40
Fig. A23. Annual oxygen [ml/l] at 250 m. depth. ... 41
Fig. A24. Annual oxygen [ml/l] at 400 m. depth. ... 42
Fig. A25. Annual oxygen [ml/l] at 500 m. depth. ... 43
Fig. A26. Annual oxygen [ml/l] at 700 m. depth. ... 44
Fig. A27. Annual oxygen [ml/l] at 1000 m. depth. ... 45
Fig. A28. Annual oxygen [ml/l] at 1500 m. depth. ... 46
Fig. A29. Annual oxygen [ml/l] at 2000 m. depth. ... 47
Fig. A30. Annual oxygen [ml/l] at 2500 m. depth. ... 48
Fig. A31. Annual oxygen [ml/l] at 3000 m. depth. ... 49
Fig. A32. Annual oxygen [ml/l] at 4000 m. depth. ... 50

Appendix B: Maps of the seasonal (winter, summer, fall, spring) number of observations, seasonal distribution of dissolved oxygen (O₂), and seasonal minus annual distribution of O₂ at selected depth levels (Pages 51 to 90).

Fig. B1. Winter (Jan.-Mar.) oxygen observations at the surface. 51
Fig. B2. Winter (Jan.-Mar.) oxygen observations at 75 m. depth. 51
Fig. B3. Winter (Jan.-Mar.) oxygen observations at 150 m. depth. 52
Fig. B4. Winter (Jan.-Mar.) oxygen observations at 250 m. depth. 52
Fig. B5. Spring (Apr.-Jun.) oxygen observations at the surface.. 53
Fig. B6. Spring (Apr.-Jun.) oxygen observations at 75 m. depth..................................... 53
Fig. B7. Spring (Apr.-Jun.) oxygen observations at 150 m. depth.................................. 54
Fig. B8. Spring (Apr.-Jun.) oxygen observations at 250 m. depth.................................. 54
Fig. B9. Summer (Jul.-Sep.) oxygen observations at the surface.................................... 55
Fig. B10. Summer (Jul.-Sep.) oxygen observations at 75 m. depth.................................. 55
Fig. B11. Summer (Jul.-Sep.) oxygen observations at 150 m. depth................................. 56
Fig. B12. Summer (Jul.-Sep.) oxygen observations at 250 m. depth................................. 56
Fig. B13. Fall (Oct.-Dec.) oxygen observations at the surface... 57
Fig. B14. Fall (Oct.-Dec.) oxygen observations at 75 m. depth....................................... 57
Fig. B15. Fall (Oct.-Dec.) oxygen observations at 150 m. depth..................................... 58
Fig. B16. Fall (Oct.-Dec.) oxygen observations at 250 m. depth..................................... 58
Fig. B17. Winter (Jan.-Mar.) oxygen [ml/l] at the surface... 59
Fig. B18. Winter (Jan.-Mar.) minus annual oxygen [ml/l] at the surface............................. 60
Fig. B19. Winter (Jan.-Mar.) oxygen [ml/l] at 75 m. depth.. 61
Fig. B20. Winter (Jan.-Mar.) minus annual oxygen [ml/l] at 75 m. depth.......................... 62
Fig. B21. Winter (Jan.-Mar.) oxygen [ml/l] at 150 m. depth.. 63
Fig. B22. Winter (Jan.-Mar.) minus annual oxygen [ml/l] at 150 m. depth....................... 64
Fig. B23. Winter (Jan.-Mar.) oxygen [ml/l] at 250 m. depth.. 65
Fig. B24. Winter (Jan.-Mar.) minus annual oxygen [ml/l] at 250 m. depth....................... 66
Fig. B25. Spring (Apr.-Jun.) oxygen [ml/l] at the surface... 67
Fig. B26. Spring (Apr.-Jun.) minus annual oxygen [ml/l] at the surface............................. 68
Fig. B27. Spring (Apr.-Jun.) oxygen [ml/l] at 75 m. depth... 69
Fig. B28. Spring (Apr.-Jun.) minus annual oxygen [ml/l] at 75 m. depth.......................... 70
Fig. B29. Spring (Apr.-Jun.) oxygen [ml/l] at 150 m. depth.. 71
Fig. B30. Spring (Apr.-Jun.) minus annual oxygen [ml/l] at 150 m. depth....................... 72
Fig. B31. Spring (Apr.-Jun.) oxygen [ml/l] at 250 m. depth.. 73
Fig. B32. Spring (Apr.-Jun.) minus annual oxygen [ml/l] at 250 m. depth....................... 74
Fig. B33. Summer (Jul.-Sep.) oxygen [ml/l] at the surface... 75
Fig. B34. Summer (Jul.-Sep.) minus annual oxygen [ml/l] at the surface......................... 76
Fig. B35. Summer (Jul.-Sep.) oxygen [ml/l] at 75 m. depth.. 77
Fig. B36. Summer (Jul.-Sep.) minus annual oxygen [ml/l] at 75 m. depth....................... 78
Fig. B37. Summer (Jul.-Sep.) oxygen [ml/l] at 150 m. depth....................................... 79
Fig. B38. Summer (Jul.-Sep.) minus annual oxygen [ml/l] at 150 m. depth....................... 80
Fig. B39. Summer (Jul.-Sep.) oxygen [ml/l] at 250 m. depth....................................... 81
Fig. B40. Summer (Jul.-Sep.) minus annual oxygen [ml/l] at 250 m. depth....................... 82
Fig. B41. Fall (Oct.-Dec.) oxygen [ml/l] at the surface... 83
Fig. B42. Fall (Oct.-Dec.) minus annual oxygen [ml/l] at the surface............................... 84
Fig. B43. Fall (Oct.-Dec.) oxygen [ml/l] at 75 m. depth... 85
Fig. B44. Fall (Oct.-Dec.) minus annual oxygen [ml/l] at 75 m. depth.......................... 86
Fig. B45. Fall (Oct.-Dec.) oxygen [ml/l] at 150 m. depth.. 87
Fig. B46. Fall (Oct.-Dec.) minus annual oxygen [ml/l] at 150 m. depth......................... 88
Fig. B47. Fall (Oct.-Dec.) oxygen [ml/l] at 250 m. depth.. 89
Fig. B48. Fall (Oct.-Dec.) minus annual oxygen [ml/l] at 250 m. depth......................... 90

iv
Appendix C: Maps of the monthly number of observations, monthly distribution of dissolved oxygen (O$_2$), and monthly minus annual distribution of O$_2$ at selected depth levels (Pages 91 to 150).

Fig. C1. January oxygen observations at the surface .. 91
Fig. C2. January oxygen observations at 75 m. depth .. 91
Fig. C3. February oxygen observations at the surface .. 92
Fig. C4. February oxygen observations at 75 m. depth .. 92
Fig. C5. March oxygen observations at the surface ... 93
Fig. C6. March oxygen observations at 75 m. depth .. 93
Fig. C7. April oxygen observations at the surface .. 94
Fig. C8. April oxygen observations at 75 m. depth .. 94
Fig. C9. May oxygen observations at the surface .. 95
Fig. C10. May oxygen observations at 75 m. depth ... 95
Fig. C11. June oxygen observations at the surface .. 96
Fig. C12. June oxygen observations at 75 m. depth .. 96
Fig. C13. July oxygen observations at the surface ... 97
Fig. C14. July oxygen observations at 75 m. depth ... 97
Fig. C15. August oxygen observations at the surface ... 98
Fig. C16. August oxygen observations at 75 m. depth .. 98
Fig. C17. September oxygen observations at the surface ... 99
Fig. C18. September oxygen observations at 75 m. depth .. 99
Fig. C19. October oxygen observations at the surface ... 100
Fig. C20. October oxygen observations at 75 m. depth ... 100
Fig. C21. November oxygen observations at the surface ... 101
Fig. C22. November oxygen observations at 75 m. depth ... 101
Fig. C23. December oxygen observations at the surface ... 102
Fig. C24. December oxygen observations at 75 m. depth ... 102
Fig. C25. January mean oxygen [ml/l] at the surface ... 103
Fig. C26. January minus annual oxygen [ml/l] at the surface 104
Fig. C27. January mean oxygen [ml/l] at 75 m. depth .. 105
Fig. C28. January minus annual oxygen [ml/l] at 75 m. depth 106
Fig. C29. February mean oxygen [ml/l] at the surface .. 107
Fig. C30. February minus annual oxygen [ml/l] at the surface 108
Fig. C31. February mean oxygen [ml/l] at 75 m. depth .. 109
Fig. C32. February minus annual oxygen [ml/l] at 75 m. depth 110
Fig. C33. March mean oxygen [ml/l] at the surface .. 111
Fig. C34. March minus annual oxygen [ml/l] at the surface .. 112
Fig. C35. March mean oxygen [ml/l] at 75 m. depth ... 113
Fig. C36. March minus annual oxygen [ml/l] at 75 m. depth .. 114
Fig. C37. April mean oxygen [ml/l] at the surface .. 115
Fig. C38. April minus annual oxygen [ml/l] at the surface ... 116
Fig. C39. April mean oxygen [ml/l] at 75 m. depth .. 117
Fig. C40. April minus annual oxygen [ml/l] at 75 m. depth ... 118
Fig. C41. May mean oxygen [ml/l] at the surface .. 119
Fig. C42. May minus annual oxygen [ml/l] at the surface .. 120
Appendix D: Maps of the annual distribution of Apparent Oxygen Utilization (AOU) at selected depth levels (Pages 150 to 166).

Fig. D1. Annual apparent oxygen utilization (ml/l) at 0 m. depth ... 151
Fig. D2. Annual apparent oxygen utilization (ml/l) at 50 m. depth.. 152
Fig. D3. Annual apparent oxygen utilization (ml/l) at 75 m. depth.. 153
Fig. D4. Annual apparent oxygen utilization (ml/l) at 100 m. depth.. 154
Fig. D5. Annual apparent oxygen utilization (ml/l) at 150 m. depth... 155
Fig. D6. Annual apparent oxygen utilization (ml/l) at 200 m. depth.. 156
Fig. D7. Annual apparent oxygen utilization (ml/l) at 250 m. depth.. 157
Fig. D8. Annual apparent oxygen utilization (ml/l) at 400 m. depth.. 158
Fig. D9. Annual apparent oxygen utilization (ml/l) at 500 m. depth.. 159
Fig. D10. Annual apparent oxygen utilization (ml/l) at 700 m. depth... 160
Fig. D11. Annual apparent oxygen utilization (ml/l) at 1000 m. depth... 161
Fig. D12. Annual apparent oxygen utilization (ml/l) at 1500 m. depth... 162
Fig. D13. Annual apparent oxygen utilization (ml/l) at 2000 m. depth.. 163
Appendix E: Maps of the seasonal (winter, summer, fall, spring) distribution of Apparent Oxygen Utilization (AOU) and seasonal minus annual distribution of AOU at selected depth levels (Pages 167 to 198).

Appendix F: Maps of the monthly distribution of Apparent Oxygen Utilization (AOU) and monthly minus annual distribution of AOU at selected depth levels (Pages 199 to 246).
Appendix G: Maps of the annual distribution of oxygen saturation (O_2^S) at selected depth levels (Pages 247 to 262).

Fig. G1. Annual percent oxygen saturation at 0 m. depth .. 247
Fig. G2. Annual percent oxygen saturation at 50 m. depth .. 248
Fig. G3. Annual percent oxygen saturation at 75 m. depth .. 249
Fig. G4. Annual percent oxygen saturation at 100 m. depth .. 250
Fig. G5. Annual percent oxygen saturation at 150 m. depth .. 251
Fig. G6. Annual percent oxygen saturation at 200 m. depth .. 252
Fig. G7. Annual percent oxygen saturation at 250 m. depth .. 253
Fig. G8. Annual percent oxygen saturation at 400 m. depth .. 254
Fig. G9. Annual percent oxygen saturation at 500 m. depth .. 255
Fig. G10. Annual percent oxygen saturation at 700 m. depth ... 256
Fig. G11. Annual percent oxygen saturation at 1000 m. depth ... 257
Fig. G12. Annual percent oxygen saturation at 1500 m. depth ... 258
Fig. G13. Annual percent oxygen saturation at 2000 m. depth ... 259
Fig. G14. Annual percent oxygen saturation at 2500 m. depth ... 260
Fig. G15. Annual percent oxygen saturation at 3000 m. depth ... 261
Fig. G16. Annual percent oxygen saturation at 4000 m. depth ... 262

Appendix H: Maps of the seasonal (winter, summer, fall, spring) distribution of oxygen saturation (O_2^S), and seasonal minus annual distribution of O_2^S at selected depth levels (Pages 263 to 294).

Fig. H1. Winter (Jan.-Mar.) percent oxygen saturation at the surface 263
Fig. H2. Winter (Jan.-Mar.) minus annual percent oxygen saturation at the surface 264
Fig. H3. Winter (Jan.-Mar.) percent oxygen saturation at 75 m. depth 265
Fig. H4. Winter (Jan.-Mar.) minus annual percent oxygen saturation at 75 m. depth 266
Fig. H5. Winter (Jan.-Mar.) percent oxygen saturation at 150 m. depth 267
Fig. H6. Winter (Jan.-Mar.) minus annual percent oxygen saturation at 150 m. depth 268
Fig. H7. Winter (Jan.-Mar.) percent oxygen saturation at 250 m. depth 269
Fig. H8. Winter (Jan.-Mar.) minus annual percent oxygen saturation at 250 m. depth 270
Fig. H9. Spring (Apr.-Jun.) percent oxygen saturation at the surface 271
Fig. H10. Spring (Apr.-Jun.) minus annual percent oxygen saturation at the surface 272
Fig. H11. Spring (Apr.-Jun.) percent oxygen saturation at 75 m. depth 273
Fig. H12. Spring (Apr.-Jun.) minus annual percent oxygen saturation at 75 m. depth 274
Fig. H13. Spring (Apr.-Jun.) percent oxygen saturation at 150 m. depth 275
Fig. H14. Spring (Apr.-Jun.) minus annual percent oxygen saturation at 150 m. depth 276
Fig. H15. Spring (Apr.-Jun.) percent oxygen saturation at 250 m. depth 277
Fig. H16. Spring (Apr.-Jun.) minus annual percent oxygen saturation at 250 m. depth 278
Fig. H17. Summer (Jul.-Sep.) percent oxygen saturation at the surface 279
Fig. H18. Summer (Jul.-Sep.) minus annual percent oxygen saturation at the surface 280
Fig. H19. Summer (Jul.-Sep.) percent oxygen saturation at 75 m. depth 281
Fig. H20. Summer (Jul.-Sep.) minus annual percent oxygen saturation at 75 m. depth 282
Fig. H21. Summer (Jul.-Sep.) percent oxygen saturation at 150 m. depth 283
Fig. H22. Summer (Jul.-Sep.) minus annual percent oxygen saturation at 150 m. depth 284
Fig. H23. Summer (Jul.-Sep.) percent oxygen saturation at 250 m. depth 285
Appendix I: Maps of the monthly distribution of oxygen saturation (O_2^+), and monthly minus annual distribution of O_2^+ at selected depth levels (Pages 295 to 342).

Fig. I1. January mean percent oxygen saturation at the surface. .. 295
Fig. I2. January minus annual percent oxygen saturation at the surface................................ 296
Fig. I3. January mean percent oxygen saturation at 75 m. depth....................................... 297
Fig. I4. January minus annual percent oxygen saturation at 75 m. depth.............................. 298
Fig. I5. February mean percent oxygen saturation at the surface. 299
Fig. I6. February minus annual percent oxygen saturation at the surface............................ 300
Fig. I7. February mean percent oxygen saturation at 75 m. depth..................................... 301
Fig. I8. February minus annual percent oxygen saturation at 75 m. depth........................... 302
Fig. I9. March mean percent oxygen saturation at the surface. .. 303
Fig. I10. March minus annual percent oxygen saturation at the surface............................. 304
Fig. I11. March mean percent oxygen saturation at 75 m. depth....................................... 305
Fig. I12. March minus annual percent oxygen saturation at 75 m. depth............................ 306
Fig. I13. April mean percent oxygen saturation at the surface. 307
Fig. I14. April minus annual percent oxygen saturation at the surface............................... 308
Fig. I15. April mean percent oxygen saturation at 75 m. depth.. 309
Fig. I16. April minus annual percent oxygen saturation at 75 m. depth............................. 310
Fig. I17. May mean percent oxygen saturation at the surface. ... 311
Fig. I18. May minus annual percent oxygen saturation at the surface............................... 312
Fig. I19. May mean percent oxygen saturation at 75 m. depth... 313
Fig. I20. May minus annual percent oxygen saturation at 75 m. depth............................. 314
Fig. I21. June mean percent oxygen saturation at the surface. .. 315
Fig. I22. June minus annual percent oxygen saturation at the surface............................... 316
Fig. I23. June mean percent oxygen saturation at 75 m. depth.. 317
Fig. I24. June minus annual percent oxygen saturation at 75 m. depth............................. 318
Fig. I25. July mean percent oxygen saturation at the surface... 319
Fig. I26. July minus annual percent oxygen saturation at the surface............................... 320
Fig. I27. July mean percent oxygen saturation at 75 m. depth.. 321
Fig. I28. July minus annual percent oxygen saturation at 75 m. depth............................. 322
Fig. I29. August mean percent oxygen saturation at the surface. 323
Fig. I30. August minus annual percent oxygen saturation at the surface.......................... 324
Fig. I31. August mean percent oxygen saturation at 75 m. depth.................................... 325
Fig. I32. August minus annual percent oxygen saturation at 75 m. depth....................... 326
Fig. I33. September mean percent oxygen saturation at the surface.................................. 327
Fig. I34. September minus annual percent oxygen saturation at the surface..................... 328
Fig. I35. September mean percent oxygen saturation at 75 m. depth................................. 329
Fig. I36. September minus annual percent oxygen saturation at 75 m. depth 330
Fig. I37. October mean percent oxygen saturation at the surface..................................... 331
Fig. I38. October minus annual percent oxygen saturation at the surface......................... 332
Fig. I39. October mean percent oxygen saturation at 75 m. depth................................ 333
Fig. I40. October minus annual percent oxygen saturation at 75 m. depth....................... 334
Fig. I41. November mean percent oxygen saturation at the surface................................ 335
Fig. I42. November minus annual percent oxygen saturation at the surface..................... 336
Fig. I43. November mean percent oxygen saturation at 75 m. depth............................... 337
Fig. I44. November minus annual percent oxygen saturation at 75 m. depth.................... 338
Fig. I45. December mean percent oxygen saturation at the surface............................... 339
Fig. I46. December minus annual percent oxygen saturation at the surface................... 340
Fig. I47. December mean percent oxygen saturation at 75 m. depth............................... 341
Fig. I48. December minus annual percent oxygen saturation at 75 m. depth................... 342
Preface

The oceanographic analyses described by this atlas series expand on earlier works, e.g., the *World Ocean Atlas 2001* (WOA01), *World Ocean Atlas 1998* (WOA98), *World Ocean Atlas 1994* (WOA94) and *Climatological Atlas of the World Ocean* (Levitus, 1982). Previously published oceanographic objective analyses have proven to be of great utility to the oceanographic, climate research, and operational environmental forecasting communities. Such analyses are used as boundary and/or initial conditions in numerical ocean circulation models and atmosphere-ocean models, for verification of numerical simulations of the ocean, as a form of “sea truth” for satellite measurements such as altimetric observations of sea surface height, for computation of nutrient fluxes by Ekman transport, and for planning oceanographic expeditions.

We continue preparing climatological analyses on a one-degree grid. This is because higher resolution analyses are not justified for all the variables we are working with and we wish to produce a set of analyses for which all variables have been analyzed in the same manner. High-resolution analyses as typified by the work of Boyer *et al.*, (2004) will be published separately.

In the acknowledgment section of this publication we have expressed our view that creation of global ocean profile and plankton databases and analyses are only possible through the cooperation of scientists, data managers, and scientific administrators throughout the international scientific community. I would also like to thank my colleagues and the staff of the Ocean Climate Laboratory of NODC for their dedication to the project leading to publication of this atlas series. Their integrity and thoroughness have made this database possible. It is my belief that the development and management of national and international oceanographic data archives is best performed by scientists who are actively working with the historical data.

Sydney Levitus
National Oceanographic Data Center
Silver Spring, MD
September 2006
Acknowledgments

This work was made possible by a grant from the NOAA Climate and Global Change Program which enabled the establishment of a research group at the National Oceanographic Data Center. The purpose of this group is to prepare research quality oceanographic databases, as well as to compute objective analyses of, and diagnostic studies based on, these databases.

The data on which this atlas is based are in World Ocean Database 2005 and are distributed on-line and on DVD by NODC/WDC. Many data were acquired as a result of the IOC/IOGE Global Oceanographic Data Archaeology and Rescue (GODAR) project, and the IOC/IOGE World Ocean Database project (WOD). At NODC/WDC, “data archaeology and rescue” projects are supported with funding from the NOAA Environmental Science Data and Information Management (ESDIM) Program and the NOAA climate and Global Change Program which has included support from NASA and DOE. Support for some of the regional IOC/GODAR meetings was provided by the Marine Science and Technology (MAST) program of the European Union. The European Community has also provided support for the Mediterranean Data Archeology and Rescue (MEDAR/MEDATLAS) project which has resulted in the inclusion of substantial amounts of ocean profile data from the Mediterranean and Black Seas into World Ocean Database 2005.

We would like to acknowledge the scientists, technicians, and programmers who have collected and processed data, those individuals who have submitted data to national and regional data centers as well as the managers and staff at the various data centers. We thank all of our colleagues at the NODC/Ocean Climate Laboratory. Their efforts have made this and similar works possible.
WORLD OCEAN ATLAS 2005
Volume 3: Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation

ABSTRACT

This atlas consists of a description of data analysis procedures and horizontal maps of annual, seasonal, and monthly climatological distribution fields of dissolved oxygen, apparent oxygen utilization (AOU), and dissolved oxygen saturation at selected standard depth levels of the world ocean on a one-degree latitude-longitude grid. The aim of the maps is to illustrate large-scale characteristics of the distribution of dissolved oxygen as a function of depth. The oceanographic data used to generate these climatological maps were computed by objective analysis of all scientifically quality-controlled historical dissolved oxygen data in the World Ocean Database 2005. Maps are presented for climatological composite periods (annual, seasonal, monthly, seasonal and monthly difference fields from the annual mean field, and the number of observations) at selected standard depths.

1. INTRODUCTION

The distribution of dissolved oxygen (O$_2$) in the world ocean is affected by biochemical and physical processes. Biochemical processes include sources and sinks of O$_2$ due to marine production, respiration, and oxidation of labile organic matter (i.e., biological pump). Physical processes include sources and sinks of O$_2$ caused by water mass renewal, air-sea flux exchange, gas solubility, and water mixing. The oceanic O$_2$ inventory is sensitive to global changes driven by the physical and biological state of the ocean (Keeling and Garcia, 2001).

This atlas includes an objective analysis of all scientifically quality-controlled historical O$_2$ measurements available in the World Ocean Database 2005 (WOD05; Boyer et al., 2006). We present data analysis procedures and horizontal maps showing annual, seasonal, and monthly climatologies and related statistical fields for O$_2$, Apparent Oxygen Utilization (AOU), and dissolved oxygen saturation (O$_2^S$) at selected standard depth levels between the surface and the ocean bottom to a maximum depth of 5500 m. This atlas includes a subset of climatological maps. The complete set of maps, statistical and objectively analyzed data fields, and documentation are available on Digital Video Disk (DVD) by sending an e-mail request to NODC.Services@noaa.gov and on-line at www.nodc.noaa.gov/OC5/indprod.html. This atlas is part of the World Ocean Atlas 2005 (WOA05) series. The WOA05 series include analysis for temperature (Locarnini et al., 2006); salinity (Antonov et al., 2006); dissolved oxygen, Apparent Oxygen Utilization, and oxygen saturation (this atlas); and dissolved inorganic nutrients (Garcia et al., 2006a). Climatologies are here defined as climatological data mean oceanographic fields at selected standard depth levels based on the objective analysis of historical oceanographic profiles and selected surface-only data. A profile is defined as a set of measurements for a single
variable (temperature, salinity, O$_2$, etc.) at discrete depths taken as an instrument drops or rises vertically in the water column. All climatologies use all available data regardless of year of observation. The annual climatology was calculated using all data regardless of the month in which the observation was made. Seasonal climatologies were calculated using only data from the defined season (regardless of year). The seasons are here defined as follows. Winter is defined as the months of January, February, and March. Spring is defined as April, May, and June. Summer is defined as July, August, and September. Fall is defined as October, November, and December. Monthly climatologies were calculated using data only from the given month regardless of the day of the month in which the observation was made.

The O$_2$ data used are available from the National Oceanographic Data Center (NODC) and World Data Center (WDC) for Oceanography, Silver Spring, Maryland (Boyer et al., 2006). Large volumes of oceanographic data have been acquired as a result of the fulfillment of several data management projects including:

a) the Intergovernmental Oceanographic Commission (IOC) Global Oceanographic Data Archaeology and Rescue (GODAR) project (Levitus et al., 2005);

b) the IOC World Ocean Database project (WOD);

c) the IOC Global Temperature Salinity Profile project (GTSP) (IOC, 1998).

The oceanographic data used in the WOA05 series have been analyzed in a consistent, objective manner on a one-degree latitude-longitude grid at standard depth levels from the surface to a maximum depth of 5500m. The procedures are identical to those used in the World Ocean Atlas 2001 (WOA01) series (Stephens et al., 2002; Boyer et al., 2002; Locarnini et al., 2002; Conkright et al., 2002) and World Ocean Atlas 1998 (WOA98) series (Antonov et al., 1998a, b, c; Boyer et al., 1998a, b, c; Conkright et al., 1998a, b, c; O’Brien et al., 1998a, b, c). Slightly different procedures were followed in earlier analyses (Levitus, 1982; World Ocean Atlas 1994 series [WOA94, Levitus et al., 1994; Levitus and Boyer 1994a, b; Conkright et al., 1994]).

Objective analyses shown in this atlas are limited by the nature of the O$_2$ data base (data are non-uniform in space and time), characteristics of the objective analysis techniques, and the grid used. These limitations and characteristics are discussed below.

Since the publication of WOA01, substantial amounts of additional historical and modern O$_2$ data have become available. However, even with these additional data, we are still hampered in a number of ways by a lack of oceanographic data. Because of the lack of O$_2$ data, we are forced to examine the annual cycle by compositing all data regardless of the year of observation. In some geographic areas, quality control is made difficult by the limited number of O$_2$ data collected in these areas. Data may exist in an area for only one season, thus precluding any representative annual analysis. In some areas there may be a reasonable spatial distribution of data points on which to base an analysis, but there may be only a few (perhaps only one) data values in each one-degree latitude-longitude square.

We begin by describing the data sources and data distribution (Section 2). Then we describe the general data processing procedures (Section 3), the results (Section 4), summary (Section 5), and future work (Section 6). The appendices of this atlas include global maps for O$_2$, AOU, and O$_3$.
2. DATA AND DATA DISTRIBUTION

Data sources and quality control procedures are briefly described below. For further information on the data sources used in WOA05 refer to the World Ocean Database 2005 (WOD05, Boyer et al., 2006). The quality control procedures used in preparation of these analyses are described by Johnson et al., (2006).

2.1. Data sources

Historical oceanographic data used in this atlas were obtained from the NODC/WDC archives and include all data gathered as a result of the GODAR and WOD projects. All of the quality-controlled O$_2$ (ml l$^{-1}$) data used in this atlas were typically obtained by means of manual or automated chemical O$_2$ analysis of serial (discrete) water column samples (Garcia et al., 2006b). The O$_2$ values were analyzed following various modifications of the Winkler titration method (Winkler, 1888) using visual, amperometric, or photometric end-detections (i.e., Carpenter, 1965; Culberson and Huang. 1987; Knapp et al., 1990; Culberson et al., 1991; Dickson, 1994). We refer to the discrete water sample dataset in WOD05 as Ocean Station Data (OSD). Typically, each profile in the OSD dataset consists of 1 to 36 discrete O$_2$ observations collected at various depths between the surface and the bottom using Nansen or Niskin bottle water samplers. We note that WOD05 contains O$_2$ data obtained by electronic sensors mounted on the Conductivity-Temperature-Depth (CTD) rosette frame (i.e., polarographic O$_2$ electronic sensors). However, in preparation of these climatologies we used O$_2$ data believed to be obtained by chemical titration methods only. We note that most (>75%) of the O$_2$ data in the WOD05 OSD dataset were collected on or after 1965. AOU (ml l$^{-1}$) and O$_2^S$ (%) are derived variables for an O$_2$ measurement when in situ temperature and salinity were also measured at the same geographic location, time, and depth (pressure). Section 2.2 describes the calculation of AOU and O$_2^S$.

To understand the procedures for taking individual oceanographic observations and constructing climatological fields, definition of the terms “standard level data” and “observed level data” are necessary. We refer to the actual measured value of an oceanographic variable in situ (Latin for “in place”) as an “observation”, and to the depth at which such a measurement was made as the “observed level depth”. We refer to such data as “observed level data”. Before the development of oceanographic instrumentation that measure at high frequencies along the vertical profile, oceanographers often attempted to make measurements at selected “standard levels” in the water column. Sverdrup et al., (1942) presented the suggestions of the International Association of Physical Oceanography (IAPSO) as to which depths oceanographic measurements should be made or interpolated to for analysis. Different nations or institutions have a slightly different set of standard depth levels defined. For many purposes, including preparation of the present climatology, observed level data are interpolated to standard depth levels, if observations did not occur at the desired standard depths. The levels at which the O$_2$, AOU, and O$_2^S$ climatologies were calculated are given in Table 1. Table 2 shows the depths of each standard depth level. Section 3.1 discusses the vertical interpolation procedures used in our work.

2.2. Data quality control

Quality control of the O$_2$ data is a major task, the difficulty of which is directly related to lack of data and metadata (for
some areas) upon which to base statistical checks. Consequently certain empirical criteria were applied (see sections 2.2.1 through 2.2.4), and as part of the last processing step, subjective judgment was used (see sections 2.2.5 and 2.2.6). Individual data, and in some cases entire profiles or all profiles for individual cruises, have been flagged and not used further because these data produced features that were judged to be non-representative or questionable. As part of our work, we have made available WOD05 which contains both observed levels profile data and standard depth level profile data with various quality control flags applied. The flags mark individual measurements or entire profiles which were not used in the next step of the procedure, either interpolation to standard depth levels for observed level data or calculation of statistical means in the case of standard depth level data. Our knowledge of the variability of the world ocean in the instrumental record now includes a greater appreciation and understanding of the ubiquity of eddies, rings, and lenses in some parts of the world ocean as well as interannual and interdecadal variability of water mass properties associated with modal variability of the atmosphere such as the North Atlantic Oscillation, Pacific Decadal Oscillation, and El Niño Southern Ocean Oscillation. Therefore, we have simply flagged data, not eliminating them from the WOD05. Thus, individual investigators can make their own decision regarding the representativeness of the O₂ data. Investigators studying the distribution of features such as eddies will be interested in those data that we may regard as unrepresentative or questionable for the preparation of the analyses shown in this atlas.

2.2.1. Duplicate elimination

Because O₂ data are received from many sources, sometimes the same data set is received at NODC/WDC more than once but with slightly different time and/or position and/or data values, and hence are not easily identified as duplicate stations. Therefore, to eliminate the repetitive O₂ data values our databases were checked for the presence of exact and “near” exact replicates using eight different criteria. The first checks involve identifying stations with exact position/date/time and data values; the next checks involve offsets in position/date/time. Profiles identified as duplicates in the checks with a large offset were individually verified to ensure they were indeed duplicate profiles. All but one profile from each set of replicate profiles were eliminated at the first step of our processing.

2.2.2. Range and gradient checks

Range checking (i.e., checking whether an O₂ value is within preset minimum and maximum values as a function of depth and ocean region) was performed on all O₂ values as a first quality control check to flag and withhold from further use the relatively few values that were grossly outside expected oceanic ranges. Range checks were prepared for individual regions of the world ocean. Johnson et al., (2006) and Boyer and Levitus (1994) detail the quality control procedures. Tables showing the O₂ ranges selected for each basin and depth can be found in Johnson et al., (2006).

A check as to whether excessive vertical gradients occur in the data has been performed for O₂ data in WOD05 both in terms of positive and negative gradients. See Johnson et al., (2006) for limits for excessive gradients for O₂.

2.2.3. Statistical checks

Statistical checks were performed as follows. All data for O₂ (irrespective of year), at each standard depth level, were
averaged within five-degree latitude-longitude squares to produce a record of the number of observations, mean, and standard deviation in each square. Statistics were computed for the annual, seasonal, and monthly compositing periods. Below 50 m depth, if data were more than three standard deviations from the mean, the data were flagged and withheld from further use in objective analyses. Above 50 m depth, a five-standard-deviation criterion was used in five-degree squares that contained any land area. In selected five-degree squares that are close to land areas, a four-standard-deviation check was used. In all other squares a three-standard-deviation criterion was used for the 0-50 m depth layer. For standard depth levels situated directly above the bottom, a four-standard-deviation criterion was used.

The reason for the weaker standard deviation criterion in coastal and near-coastal regions is the exceptionally large range of values in the coastal five-degree square statistics for O_2. Frequency distributions of O_2 values in some coastal regions are observed to be skewed or bimodal. Thus to avoid flagging possibly good data in environments expected to have large variability, the standard deviation criteria were broadened. The total number of measurements in each profile, as well as the total number of O_2 observations exceeding the standard deviation criterion, were recorded. If more than two observations in a profile were found to exceed the standard deviation criterion, then the entire profile was flagged. This check was imposed after tests indicated that surface data from particular casts (which upon inspection appeared to be questionable) were being flagged but deeper data were not. Other situations were found where questionable data from the deeper portion of a cast were flagged, while near-surface data from the same cast were not flagged because of larger natural variability in surface layers. One reason for this was the decrease of the number of observations with depth and the resulting change in sample statistics. The standard-deviation check was applied twice to the O_2 data set for each compositing period.

In summary, first the five-degree square statistics were computed, and the data flagging procedure described above was used to provide a preliminary data set. Next, new five-degree-square statistics were computed from this preliminary data set and used with the same statistical check to produce a new, “clean” data set. The reason for applying the statistical check twice was to flag (and withhold from further use), in the first round, any grossly erroneous or non-representative data from the data set that would artificially increase the variances. The second check is then relatively more effective in identifying smaller, but questionable or non-representative, O_2 observations.

2.2.4. Subjective flagging of data

The O_2 data were averaged by one-degree squares for input to the objective analysis program. After initial objective analyses were computed, the input set of one-degree means still contained questionable data contributing to unrealistic distributions, yielding intense bull's-eyes or spatial gradients. Examination of these features indicated that some of them were due to profiles from particular oceanographic cruises. In such cases, data from an entire cruise were flagged and withheld from further use by setting a flag on each profile from the cruise. In other cases, individual profiles or measurements were found to cause these features and were flagged.

2.2.5. Representativeness of the data

Another quality control issue is O_2 data representativeness. The general paucity of
data forces the compositing of all historical data to produce “climatological” fields. In a given one-degree square, there may be data from a month or season of one particular year, while in the same or a nearby square there may be data from an entirely different year. If there is large interannual variability in a region where scattered sampling in time has occurred, then one can expect the analysis to reflect this. Because the observations are scattered randomly with respect to time, except for a few limited areas, the results cannot, in a strict sense, be considered a true long-term climatological average.

We present smoothed analyses of historical means, based (in certain areas) on relatively few observations. We believe, however, that useful information about the oceans can be gained through our procedures and that the large-scale features are representative of the real ocean. We believe that, if a hypothetical global synoptic set of ocean O$_2$ data existed and one were to smooth these data to the same degree as we have smoothed the historical means overall, the large-scale features would be similar to our results. Some differences would certainly occur because of interannual-to-decadal-scale variability.

Basically, the O$_2$ data diminish in number with increasing depth. In the upper ocean, the all-data annual mean distributions are quite reasonable for defining large-scale features, but for the seasonal periods, the data base is inadequate in some regions. With respect to the deep ocean, in some areas the distribution of observations may be adequate for some diagnostic computations but inadequate for other purposes. If an isolated deep basin or some region of the deep ocean has only one observation, then no horizontal gradient computations are meaningful. However, useful information is provided by the observation in the computation of other quantities (e.g., a volumetric mean over a major ocean basin).

2.3 Calculation of AOU and O$_2^S$

Apparent Oxygen Utilization (AOU, ml l$^{-1}$) and oxygen saturation (O$_2^S$, %) were estimated when quality-controlled in situ O$_2$ (ml l$^{-1}$), temperature (t, °C), and salinity (S) were all measured at the same geographic location, time, and depth (pressure). We note that not all O$_2$ observations included simultaneous temperature and salinity measurements (see section 2.2.4). Thus, the total number of observations available for calculating AOU and O$_2^S$ is slightly smaller in number than the available number of O$_2$ observations.

AOU represents one estimate of the O$_2$ utilized due to biochemical processes relative to a preformed value. AOU (ml l$^{-1}$) was calculated as the difference between the O$_2$ gas solubility ([O$_2^*$]) and the measured O$_2$ concentrations and expressed as,

$$\text{AOU} = [\text{O}_2^*] - [\text{O}_2]$$

in which

[O$_2^*$] is the O$_2$ solubility concentration (ml l$^{-1}$) calculated as a function of in situ temperature and salinity, and one atmosphere of total pressure. The [O$_2^*$] values were calculated using the equation of Garcia and Gordon (1992) based on the [O$_2^*$] values of Benson and Krause (1984); and [O$_2$] is the measured O$_2$ concentration (ml l$^{-1}$).

AOU is an approximate measure of True Oxygen Utilization (TOU). The calculation of AOU assumes that the amount of O$_2$ used during local biochemical processes can be estimated by the difference in concentration between the observed O$_2$ and the preformed O$_2$ values. However, AOU is affected by
processes other than biochemical processes such as the non-linearity of \([O_2^*]\) as a function of temperature and salinity, water mixing, departures of \([O_2^*]\) from instantaneous equilibration with the atmosphere, bubble gas injection, skin temperature effects, and other factors (Broecker and Peng, 1982; Redfield et al., 1963; Garcia and Keeling, 2001; Ito, 2004). We assume that these processes are small in magnitude when compared to the amplitude of the climatological \(O_2\) signal.

The \(O_2\) saturation (\(O_2^s\), %) was estimated as 100% times the ratio of \([O_2]\) to \([O_2^*]\).

\[
O_2^s = 100\% \frac{[O_2]}{[O_2^*]}
\]

The calculated AOU and \(O_2^s\) values were processed following the same quality control methods outlined in section 2. Furthermore, if any of the \(O_2\) (section 2) temperature (Locarnini et al., 2006), or salinity (Antonov et al., 2006) values were flagged during the quality control procedure, then AOU and \(O_2^s\) values were flagged also, and not used in the analysis.

3. DATA PROCESSING PROCEDURES

3.1. Vertical interpolation to standard levels

Vertical interpolation of observed depth level data to standard depth levels followed procedures in JPOTS Editorial Panel (1991). These procedures are in part based on the work of Reiniger and Ross (1968). Four observed depth level values surrounding the standard depth level value were used, two values from above the standard level and two values from below the standard level. The pair of values furthest from the standard level are termed “exterior” points and the pair of values closest to the standard level are termed “interior” points. Paired parabolas were generated via Lagrangian interpolation. A reference curve was fitted to the four data points and used to define unacceptable interpolations caused by “overshooting” in the interpolation. When there were too few data points above or below the standard level to apply the Reiniger and Ross technique, we used a three-point Lagrangian interpolation. If three points were not available (either two above and one below or vice-versa), we used linear interpolation. In the event that an observation occurred exactly at the depth of a standard level, then a direct substitution was made. Table 2 provides the range of acceptable distances for which observed level data could be used for interpolation to a standard level.

3.2. Methods of analysis

3.2.1. Overview

An objective analysis scheme of the type described by Barnes (1964) was used to produce the fields shown in this atlas. This scheme had its origins in the work of Cressman (1959). In World Ocean Atlas 1994 (WOA94), the Barnes (1973) scheme was used. This required only one “correction” to the first-guess field at each grid point in comparison to the successive correction method of Cressman (1959) and Barnes (1964). This was to minimize computing time used in the processing. Barnes (1994) recommends a return to a multi-pass analysis when computing time is not an issue. Based on our own experience we agree with this assessment. The single pass analysis, used in WOA94, caused an artificial front in the Southeastern Pacific Ocean in a data sparse area (Anne Marie Treguier, personal communication). The analysis scheme used in generating WOA98, WOA01, and WOA05 analyses uses a three-
pass “correction” which does not result in the creation of this artificial front.

Inputs to the analysis scheme were one-degree square means of data values at standard levels (for time period and variable being analyzed), and a first-guess value for each square. For instance, one-degree square means for our annual analysis were computed using all available data regardless of date of observation. For July, we used all historical July data regardless of year of observation.

Analysis was the same for all standard depth levels. Each one-degree latitude-longitude square value was defined as being representative of its square. The 360x180 gridpoints are located at the intersection of half-degree lines of latitude and longitude. An influence radius was then specified. At those grid points where there was an observed mean value, the difference between the mean and the first-guess at the point was computed. Next, a correction to the first-guess value at all gridpoints was computed as a distance-weighted mean of all gridpoint difference values that lie within the area around the gridpoint defined by the influence radius. Mathematically, the correction factor derived by Barnes (1964) is given by the expression:

\[
C_{i,j} = \frac{\sum_{s=1}^{n} W_s Q_s}{\sum_{s=1}^{n} W_s},
\]

in which:

(i,j) - coordinates of a gridpoint in the east-west and north-south directions respectively;

\(C_{i,j}\) - the correction factor at gridpoint coordinates \((i,j)\);

\(n\) - the number of observations that fall within the area around the point \(i,j\) defined by the influence radius;

\(Q_s\) - the difference between the observed mean and the first-guess at the \(s^{th}\) point in the influence area;

\[
W_s = e^{-\frac{r^2}{R^2}} \quad \text{for} \ r \leq R; \ W_s = 0 \ \text{for} \ r > R;
\]

\(r\) - distance of the observation from the gridpoint;

\(R\) - influence radius;

\(E = 4\).

The derivation of the weight function, \(W_s\), will be presented in the following section. At each gridpoint we computed an analyzed value \(G_{i,j}\) as the sum of the first-guess, \(F_{i,j}\), and the correction \(C_{i,j}\). The expression for this is

\[
G_{i,j} = F_{i,j} + C_{i,j}
\]

If there were no data points within the area defined by the influence radius, then the correction was zero, the first-guess field was left unchanged, and the analyzed value was simply the first-guess value. This correction procedure was applied at all gridpoints to produce an analyzed field. The resulting field was first smoothed with a median filter (Tukey, 1974; Rabiner et al., 1975) and then smoothed with a five-point smoother of the type described by Shuman (1957) (hereafter referred as five-point Shuman smoother). The choice of first-guess fields is important and we discuss our procedures in section 3.2.5.

The analysis scheme is set up so that the influence radius, and the number of five-point smoothing passes can be varied with each iteration. The strategy used is to begin the analysis with a large influence radius and decrease it with each iteration. This technique allows us to analyze progressively smaller scale phenomena with each iteration.

The analysis scheme is based on the work of several researchers analyzing meteorological data. Bergthorsson and Doos (1955)
computed corrections to a first-guess field using various techniques: one assumed that the difference between a first-guess value and an analyzed value at a gridpoint was the same as the difference between an observation and a first-guess value at a nearby observing station. All the observed differences in an area surrounding the gridpoint were then averaged and added to the gridpoint first-guess value to produce an analyzed value. Cressman (1959) applied a distance-related weight function to each observation used in the correction in order to give more weight to observations that occur closest to the gridpoint. In addition, Cressman introduced the method of performing several iterations of the analysis scheme using the analysis produced in each iteration as the first-guess field for the next iteration. He also suggested starting the analysis with a relatively large influence radius and decreasing it with successive iterations so as to analyze smaller scale phenomena with each pass.

Sasaki (1960) introduced a weight function that was specifically related to the density of observations, and Barnes (1964, 1973) extended the work of Sasaki. The weight function of Barnes (1964) has been used here. The objective analysis scheme we used is in common use by the mesoscale meteorological community. Several studies of objective analysis techniques have been made. Achtemeier (1987) examined the “concept of varying influence radii for a successive corrections objective analysis scheme.” Seaman (1983) compared the “objective analysis accuracies of statistical interpolation and successive correction schemes.” Smith and Leslie (1984) performed an “error determination of a successive correction type objective analysis scheme.” Smith et al., (1986) made “a comparison of errors in objectively analyzed fields for uniform and non-uniform station distribution.”

3.2.2. Derivation of Barnes (1964) weight function

The principle upon which the Barnes (1964) weight function is derived is that “the two-dimensional distribution of an atmospheric variable can be represented by the summation of an infinite number of independent harmonic waves, that is, by a Fourier integral representation”. If \(f(x,y) \) is the variable, then in polar coordinates \((r,\theta)\), a smoothed or filtered function \(g(x,y) \) can be defined:

\[
g(x,y) = \frac{1}{2\pi} \int_{\theta} \int_{r} \eta f(x + r\cos\theta, y + r\sin\theta) \, d(r^2/4K) \, d\theta
\]

in which \(r \) is the radial distance from a gridpoint whose coordinates are \((x,y)\). The weight function is defined as

\[
\eta = e^{-\frac{r^2}{4K}}
\]

which resembles the Gaussian distribution. The shape of the weight function is determined by the value of \(K \), which relates to the distribution of data. The determination of \(K \) follows. The weight function has the property that

\[
\frac{1}{2\pi} \int_{0}^{2\pi} \int_{0}^{\infty} \eta \left(\frac{r^2}{4K}\right) \, d\theta = 1
\]

This property is desirable because in the continuous case (3) the application of the weight function to the distribution \(f(x,y) \) will not change the mean of the distribution. However, in the discrete case (1), we only sum the contributions to within the distance \(R \). This introduces an error in the evaluation of the filtered function, because the condition given by (5) does not apply. The error can be pre-determined and set to a reasonably small value in the following
manner. If one carries out the integration in (5) with respect to θ, the remaining integral can be rewritten as

$$
R \int_0^{\infty} \eta d \left(\frac{r^2}{4K} \right) + \int_R^\infty \eta d \left(\frac{r^2}{4K} \right) = 1 \quad (6)
$$

Defining the second integral as ε yields

$$
\int_0^R e^{-\frac{r^2}{4K}} d \left(\frac{r^2}{4K} \right) = 1 - \varepsilon \quad (7)
$$

Integrating (7), we obtain

$$
\varepsilon = e^{-\frac{R^2}{4K}} \quad (7a)
$$

Taking the natural logarithm of both sides of (7a) leads to an expression for K,

$$
K = R^2 / 4E \quad (7b)
$$

where $E \equiv -\ln \varepsilon$

Rewriting (4) using (7b) leads to the form of weight function used in the evaluation of (1). Thus, choice of E and the specification of R determine the shape of the weight function. Levitus (1982) chose $E=4$ which corresponds to a value of ε of approximately 0.02. This choice implies with respect to (7) the representation of more than 98 percent of the influence of any data around the gridpoint in the area defined by the influence radius R. This analysis (WOA05) and previous analyses (WOA94, WOA98, WOA01) used $E=4$.

Barnes (1964) proposed using this scheme in an iterative fashion similar to Cressman (1959). Levitus (1982) used a four-iteration scheme with a variable influence radius for each pass. WOA94 used a one-iteration scheme. WOA98, WOA01 and WOA05 employed a three-iteration scheme with a variable influence radius.

3.2.3. Derivation of Barnes (1964) response function

It is desirable to know the response of a data set to the interpolation procedure applied to it. Following Barnes (1964) and reducing to one-dimensional case we let

$$
f(x) = A \sin(\alpha x) \quad (8)
$$

in which $\alpha = 2\pi/\lambda$ with λ being the wavelength of a particular Fourier component, and substitute this function into equation (3) along with the expression for η in equation (4). Then

$$
g(x) = D [4 \sin(\alpha x)] = D f(x) \quad (9)
$$

in which D is the response function for one application of the analysis and defined as

$$
D = e^{-\left(\frac{\alpha R}{4}\right)^2} = e^{-\left(\frac{\pi R}{2 \lambda}\right)^2}
$$

The phase of each Fourier component is not changed by the interpolation procedure. The results of an analysis pass are used as the first-guess for the next analysis pass in an iterative fashion. The relationship between the filtered function $g(x)$ and the response function after N iterations as derived by Barnes (1964) is

$$
g_N(x) = f(x)D \sum_{n=1}^{N} (1 - D)^{n-1} \quad (10)
$$

Equation (10) differs trivially from that given by Barnes. The difference is due to our first-guess field being defined as a zonal average, annual mean, seasonal mean, or monthly mean, whereas Barnes used the first application of the analysis as a first-guess. Barnes (1964) also showed that applying the analysis scheme in an iterative fashion will result in convergence of the analyzed field to the observed data field. However, it is not desirable to approach the observed data too closely, because at least seven or eight gridpoints are needed to represent a Fourier component.
The response function given in (10) is useful in two ways: it is informative to know what Fourier components make up the analyses, and the computer programs used in generating the analyses can be checked for correctness by comparison with (10).

3.2.4. Choice of response function

The distribution of O_2 observations (see appendices) at different depths and for the different averaging periods, are not regular in space or time. At one extreme, regions exist in which every one-degree square contains data and no interpolation needs to be performed. At the other extreme are regions in which few if any data exist. Thus, with variable data spacing the average separation distance between gridpoints containing data is a function of geographical position and averaging period. However, if we computed and used a different average separation distance for each variable at each depth and each averaging period, we would be generating analyses in which the wavelengths of observed phenomena might differ from one depth level to another and from one season to another. In WOA94, a fixed influence radius of 555 kilometers was used to allow uniformity in the analysis of all variables. For the present analyses (as well as for WOA98 and WOA01), a three-pass analysis, based on Barnes (1964), with influence radii of 888, 666 and 444 km was used.

Inspection of (1) shows that the difference between the analyzed field and the first-guess field values at any gridpoint is proportional to the sum of the weighted-differences between the observed mean and first-guess at all gridpoints containing data within the influence area.

The reason for using the five-point Shuman smoother and the median smoother is that our data are not evenly distributed in space. As the analysis moves from regions containing data to regions devoid of data, small-scale discontinuities may develop. The five-point Shuman and median smoothers are used to eliminate these discontinuities. The five-point Shuman smoother does not affect the phase of the Fourier components that comprise an analyzed field.

The response function for the analyses presented in the WOA05 series is given in Table 4 and in Figure 1. For comparison purposes, the response function used by Levitus (1982), WOA94, and others are also presented. The response function represents the smoothing inherent in the objective analysis described above plus the effects of one application of the five-point Shuman smoother and one application of a five-point median smoother. The effect of varying the amount of smoothing in North Atlantic sea surface temperature (SST) fields has been quantified by Levitus (1982) for a particular case. In a region of strong SST gradient such as the Gulf Stream, the effect of smoothing can easily be responsible for differences between analyses exceeding 1.0°C.

To avoid the problem of the influence region extending across land or sills to adjacent basins, the objective analysis routine employs basin “identifiers” to preclude the use of data from adjacent basins. Table 5 lists these basins and the depth at which no exchange of information between basins is allowed during the objective analysis of data, i.e. “depths of mutual exclusion.” Some regions are nearly, but not completely, isolated topographically. Because some of these nearly isolated basins have water mass properties that are different from surrounding basins, we have chosen to treat these as isolated basins as well. Not all such basins have been identified because of the complicated structure of the sea floor. In Table 5, a region marked with an “**” can interact with adjacent basins except for special areas such as the Isthmus of Panama.
3.2.5. **First-guess field determination**

There are gaps in the data coverage and, in some parts of the world ocean, there exist adjacent basins whose water mass properties are individually nearly homogeneous but have distinct basin-to basin differences. Spurious features can be created when an influence area extends over two basins of this nature (basins are listed in Table 5). Our choice of first-guess field attempts to minimize the creation of such features. To provide a first-guess field for the annual analysis at any standard level, we first zonally averaged the observed O$_2$ data in each one-degree latitude belt by individual ocean basins. The annual analysis was then used as the first-guess for each seasonal analysis and each seasonal analysis was used as a first-guess for the appropriate monthly analysis if computed.

We then reanalyzed the O$_2$ data using the newly produced analyses as first-guess fields described as follows and as shown in Figure 2. A new annual mean was computed as the mean of the twelve monthly analyses for the upper 1500 m, and the mean of the four seasons below 1500 m depth for O$_2$, AOU, and O$_2$2. The new annual mean for each variable was used as the first-guess field for new seasonal analyses. These new seasonal analyses in turn were used to produce new monthly analyses. This procedure produces slightly smoother means. More importantly we recognize that fairly large data-void regions exist, in some cases to such an extent that a seasonal or monthly analysis in these regions might not be realistic or meaningful. Geographic distribution of observations for the all-data annual periods (see appendices) is reasonable for upper layers of the ocean. By using an all-data annual mean, first-guess field regions where data exists for only one season or month will show no contribution to the annual cycle. By contrast, if we used a zonal average for each season or month, then, in those latitudes where gaps exist, the first-guess field would be heavily biased by the few data points that exist. If these were anomalous data in some way, an entire basin-wide belt might be affected.

One advantage of producing “global” fields for a particular compositing period (even though some regions are data void) is that such analyses can be modified by investigators for use in modeling studies. For example, England (1992) noted that the temperature distribution produced by Levitus (1982) for the Antarctic is too high (due to a lack of winter data for the Southern Hemisphere) to allow for the formation of Antarctic Intermediate Water in an ocean general circulation model. By increasing the temperature of the “observed” field the model was able to produce this water mass.

3.3. **Choice of objective analysis procedures**

Optimum interpolation (Gandin, 1963) has been used by some investigators to objectively analyze oceanographic data. We recognize the power of this technique but have not used it to produce analyzed fields. As described by Gandin (1963), optimum interpolation is used to analyze synoptic data using statistics based on historical data. In particular, second-order statistics such as correlation functions are used to estimate the distribution of first order parameters such as means. We attempt to map most fields in this atlas based on relatively sparse data sets. By necessity we must composite all data regardless of year of observation, to have enough data to produce a global, hemispheric, or regional analysis for a particular month, season, or even yearly. Because of the paucity of data, we prefer not to use an analysis scheme that is based on second order statistics. In addition, as Gandin has noted, there are two limiting cases associated with optimum interpolation.
The first is when a data distribution is dense. In this case, the choice of interpolation scheme makes little difference. The second case is when data are sparse. In this case, an analysis scheme based on second order statistics is of questionable value. For additional information on objective analysis procedures see Thiebaux and Pedder (1987) and Daley (1991).

3.4. Choice of spatial grid

The analyses that comprise WOA05 have been computed using the ETOPO5 land-sea topography to define ocean depths at each gridpoint (ETOPO5, 1988). From the ETOPO5 land mask, a quarter-degree land mask was created based on ocean bottom depth and land criteria. If four or more 5-minute square values out of a possible nine in a one-quarter-degree box were defined as land, then the quarter-degree gridbox was defined to be land. If no more than two of the 5-minute squares had the same depth value in a quarter-degree box, then the average value of the 5-minute ocean depths in that box was defined to be the depth of the quarter-degree gridbox. If three or more 5-minute squares out of the nine had a common bottom depth, then the depth of the quarter-degree box was set to the most common depth value. The same method was used to go from a quarter-degree to a one-degree resolution. In the one-degree resolution case, at least four points out of a possible sixteen (in a one-degree square) had to be land in order for the one-degree square to remain land and three out of sixteen had to have the same depth for the ocean depth to be set. These criteria yielded a mask that was then modified by:

a) Connecting the Isthmus of Panama,
b) Maintaining an opening in the Straits of Gibraltar and in the English Channel,
c) Connecting the Kamchatka Peninsula and the Baja Peninsula to their respective continents.

4. RESULTS

The appendices in this atlas include three types of black and white horizontal maps as a function of selected standard depth levels for O$_2$, AOU, and O^S_2, respectively:

a) Number of observations in each one-degree latitude-longitude grid used in the objective analysis binned into 1 to 5 and greater than 5 numbers of observations. Each map includes the total number of observations. We note that the number of observations is included for O$_2$ only. The number of observations for AOU and O^S_2 is a subset of the number of O$_2$ observations used in the analysis.

b) Objectively analyzed distribution fields. One-degree grids for which there were less than three values available in the objective analysis defined by the influence radius are denoted by a “+” symbol.

c) Seasonal and monthly difference fields from the annual mean field. One-degree grids for which there were less than three values available in the objective analysis defined by the influence radius are denoted by a “+” symbol.

The maps are arranged by composite time periods (annual, seasonal, month) for O$_2$, AOU, and O^S_2, respectively. Table 5 describes all available O$_2$, AOU, and O^S_2 maps and data fields. We note that the complete set of all climatological maps (in color), objectively analyzed fields and associated statistical fields at all standard depth levels shown in Table 1 are available on DVD by sending an e-mail request to NODC.Services@noaa.gov and on-line at www.nodc.noaa.gov/OC5/indprod.html.

All of the figures use consistent symbols and notations for displaying information. Continents are displayed as solid black areas. Coastal and open ocean areas
shallower than the standard depth level being displayed are shown as solid light gray areas. The objectively analyzed fields include the minimum and maximum values as well as the contour interval used. The maps may include additional contour lines displayed as dashed black lines. All of the maps were computer drafted using Generic Mapping Tools (Wessel and Smith, 1998). We describe next the computation of annual and seasonal fields (section 4.1) and available objective and statistical fields (section 4.2).

4.1. Computation of annual and seasonal fields

After completion of all of our analyses we define a final annual analysis as the average of our twelve monthly mean fields in the upper 1500 m of the ocean. Below 1500 m depth we define an annual analysis as the mean of the four seasonal analyses. Our final seasonal analyses are defined as the average of monthly analyses in the upper 1500 m of the ocean (see Figure 2).

4.2. Available statistical fields

Table 5 lists all objective and statistical fields calculated as part of WOA05. Climatologies of oceanographic variables and associated statistics described in this document, as well as global figures of same can be obtained at the WOA05 webpage (www.nodc.noaa.gov/OC5/WOA05/pr_woa05.html) and on DVD by sending a request to NODC.Services@noaa.gov.

The sample standard deviation in a gridbox was computed using:

\[s = \sqrt{\frac{1}{N-1} \sum_{n=1}^{N} (x_n - \bar{x})^2} \] (11)

in which \(x_n \) = the \(n^{th} \) data value in the gridbox, \(\bar{x} \) = mean of all data values in the gridbox, and \(N \) = total number of data values in the gridbox. The standard error of the mean was computed by dividing the standard deviation by the square root of the number of observations in each gridbox.

In addition to statistical fields, the land/ocean bottom mask and basin definition mask are available on-line at www.nodc.noaa.gov/OC5/WOA05/pr_woa05.html. A user could take the standard depth level data from WOD05 with flags and these masks, and recreate the WOA05 fields following the procedures outlined in this document. Explanations and data formats for the data files are found under documentation on the WOA05 webpage.

5. SUMMARY

In the preceding sections we have described the results of a project to objectively analyze all historical quality-controlled \(\text{O}_2 \) data in WOD05. We desire to build a set of climatological analyses that are identical in all respects for all variables in the WOA05 series including relatively data sparse variables such as nutrients (Garcia et al., 2006a). This provides investigators with a consistent set of analyses to work with.

One advantage of the analysis techniques used in this atlas is that we know the amount of smoothing by objective analyses as given by the response function in Table 3 and Figure 1. We believe this to be an important function for constructing and describing a climatology of any parameter. Particularly when computing anomalies from a standard climatology, it is important that the data field be smoothed to the same extent as the climatology, to prevent generation of spurious anomalies simply through differences in smoothing. A second reason is that purely diagnostic computations require a minimum of seven or eight gridpoints to represent any Fourier component with statistical confidence. Higher order derivatives will require more smoothing.
We have attempted to create objectively analyzed fields and data sets that can be used as a “black box.” We emphasize that some quality control procedures used are subjective. For those users who wish to make their own choices, all the data used in our analyses are available both at standard depth levels as well as observed depth levels (www.nodc.noaa.gov/OC5/WOD05/pr_wod05.html). The results presented in this atlas show some features that may be suspect and may be due to non-representative O$_2$ data that were not flagged by the quality control techniques used. Although we have attempted to identify as many of these features as possible by flagging the O$_2$ data which generate these features, some obviously could remain. Some may eventually turn out not to be artifacts but rather to represent “real” oceanic features, not yet capable of being described in a meaningful way due to lack of O$_2$ data. The views, findings, and any errors in this document are those of the authors.

6. FUTURE WORK

Our analyses will be updated when justified by additional O$_2$ observations. As more data are received at NODC/WDC, we will also be able to produce improved higher resolution climatologies for O$_2$, AOU, and O$_{S2}$O.2. Additional O$_2$ data will likely improve the results. For example, analysis of O$_2$ data collected by the broad-scale global array of temperature/salinity profiling floats (ARGO) equipped with automated O$_2$ sensors will help provide additional observational constraints on observed inter-annual to decadal-scale changes in both physical and biochemical O$_2$ processes (i.e., Emerson et al., 2002; Körtzinger et al., 2004; Körtzinger et al., 2005, Garcia et al., 2005a,b; Garcia et al., 1998; Keeling and Garcia, 2002; Bindoff and McDougall, 2002; Deutsch et al., 2005).

7. REFERENCES

Benson, B.B., and O. Krauss, 1984. The

Seaman, R.S., 1983. Objective Analysis accuracies of statistical interpolation and successive correction schemes.

Table 1. Descriptions of climatologies for dissolved oxygen (O_2), Apparent Oxygen Utilization (AOU), and oxygen saturation (O_2^s) in WOA05. The climatologies have been calculated based on bottle data (OSD) from WOD05. The standard depth levels are shown in Table 2.

<table>
<thead>
<tr>
<th>Oceanographic Variable</th>
<th>Depths for Annual Climatology</th>
<th>Depths for Seasonal Climatology</th>
<th>Depths for Monthly Climatology</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_2, AOU, and O_2^s</td>
<td>0-5500 m (33 levels)</td>
<td>0-5500 m (33 levels)</td>
<td>0-1500 m (24 levels)</td>
</tr>
</tbody>
</table>

Table 2. Acceptable distances (m) for defining interior and exterior values used in the Reiniger and Ross (1968) scheme for interpolating observed level data to standard levels.

<table>
<thead>
<tr>
<th>Standard Level number</th>
<th>Standard depths (m)</th>
<th>Acceptable distances (m) for interior values</th>
<th>Acceptable distances (m) for exterior values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>5</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>6</td>
<td>75</td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>8</td>
<td>125</td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>9</td>
<td>150</td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>10</td>
<td>200</td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>11</td>
<td>250</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>12</td>
<td>300</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>13</td>
<td>400</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>14</td>
<td>500</td>
<td>100</td>
<td>400</td>
</tr>
<tr>
<td>15</td>
<td>600</td>
<td>100</td>
<td>400</td>
</tr>
<tr>
<td>16</td>
<td>700</td>
<td>100</td>
<td>400</td>
</tr>
<tr>
<td>17</td>
<td>800</td>
<td>100</td>
<td>400</td>
</tr>
<tr>
<td>18</td>
<td>900</td>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>19</td>
<td>1000</td>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>20</td>
<td>1100</td>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>21</td>
<td>1200</td>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>22</td>
<td>1300</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>23</td>
<td>1400</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>24</td>
<td>1500</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>25</td>
<td>1750</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>26</td>
<td>2000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>27</td>
<td>2500</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>28</td>
<td>3000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>29</td>
<td>3500</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>30</td>
<td>4000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>31</td>
<td>4500</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>32</td>
<td>5000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>33</td>
<td>5500</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>
Table 3. Response function of the objective analysis scheme as a function of wavelength for WOA05 and earlier analyses. Response function is normalized to 1.0.

<table>
<thead>
<tr>
<th>Wavelength*</th>
<th>Levitus (1982)</th>
<th>WOA94</th>
<th>WOA98, 01, 05</th>
</tr>
</thead>
<tbody>
<tr>
<td>360ΔX</td>
<td>1.000</td>
<td>0.999</td>
<td>1.000</td>
</tr>
<tr>
<td>180ΔX</td>
<td>1.000</td>
<td>0.997</td>
<td>0.999</td>
</tr>
<tr>
<td>120ΔX</td>
<td>1.000</td>
<td>0.994</td>
<td>0.999</td>
</tr>
<tr>
<td>90ΔX</td>
<td>1.000</td>
<td>0.989</td>
<td>0.998</td>
</tr>
<tr>
<td>72ΔX</td>
<td>1.000</td>
<td>0.983</td>
<td>0.997</td>
</tr>
<tr>
<td>60ΔX</td>
<td>1.000</td>
<td>0.976</td>
<td>0.995</td>
</tr>
<tr>
<td>45ΔX</td>
<td>1.000</td>
<td>0.957</td>
<td>0.992</td>
</tr>
<tr>
<td>40ΔX</td>
<td>0.999</td>
<td>0.946</td>
<td>0.990</td>
</tr>
<tr>
<td>36ΔX</td>
<td>0.999</td>
<td>0.934</td>
<td>0.987</td>
</tr>
<tr>
<td>30ΔX</td>
<td>0.996</td>
<td>0.907</td>
<td>0.981</td>
</tr>
<tr>
<td>24ΔX</td>
<td>0.983</td>
<td>0.857</td>
<td>0.969</td>
</tr>
<tr>
<td>20ΔX</td>
<td>0.955</td>
<td>0.801</td>
<td>0.952</td>
</tr>
<tr>
<td>18ΔX</td>
<td>0.923</td>
<td>0.759</td>
<td>0.937</td>
</tr>
<tr>
<td>15ΔX</td>
<td>0.828</td>
<td>0.671</td>
<td>0.898</td>
</tr>
<tr>
<td>12ΔX</td>
<td>0.626</td>
<td>0.532</td>
<td>0.813</td>
</tr>
<tr>
<td>10ΔX</td>
<td>0.417</td>
<td>0.397</td>
<td>0.698</td>
</tr>
<tr>
<td>9ΔX</td>
<td>0.299</td>
<td>0.315</td>
<td>0.611</td>
</tr>
<tr>
<td>8ΔX</td>
<td>0.186</td>
<td>0.226</td>
<td>0.500</td>
</tr>
<tr>
<td>6ΔX</td>
<td>3.75x10^-2</td>
<td>0.059</td>
<td>0.229</td>
</tr>
<tr>
<td>5ΔX</td>
<td>1.34x10^-2</td>
<td>0.019</td>
<td>0.105</td>
</tr>
<tr>
<td>4ΔX</td>
<td>1.32x10^-3</td>
<td>2.23x10^-3</td>
<td>2.75x10^-4</td>
</tr>
<tr>
<td>3ΔX</td>
<td>2.51x10^-3</td>
<td>1.90x10^-4</td>
<td>5.41x10^-3</td>
</tr>
<tr>
<td>2ΔX</td>
<td>5.61x10^-7</td>
<td>5.30x10^-7</td>
<td>1.36x10^-6</td>
</tr>
</tbody>
</table>

For ΔX = 111 km, the meridional separation at the Equator.
Table 4. Basins defined for objective analysis and the shallowest standard depth level for which each basin is defined.

<table>
<thead>
<tr>
<th>#</th>
<th>Basin</th>
<th>Standard Depth Level</th>
<th>#</th>
<th>Basin</th>
<th>Standard Depth Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Atlantic Ocean</td>
<td>1*</td>
<td>30</td>
<td>North American Basin</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>Pacific Ocean</td>
<td>1*</td>
<td>31</td>
<td>West European Basin</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>Indian Ocean</td>
<td>1*</td>
<td>32</td>
<td>Southeast Indian Basin</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>Mediterranean Sea</td>
<td>1*</td>
<td>33</td>
<td>Coral Sea</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>Baltic Sea</td>
<td>1</td>
<td>34</td>
<td>East Indian Basin</td>
<td>29</td>
</tr>
<tr>
<td>6</td>
<td>Black Sea</td>
<td>1</td>
<td>35</td>
<td>Central Indian Basin</td>
<td>29</td>
</tr>
<tr>
<td>7</td>
<td>Red Sea</td>
<td>1</td>
<td>36</td>
<td>Southwest Atlantic Basin</td>
<td>29</td>
</tr>
<tr>
<td>8</td>
<td>Persian Gulf</td>
<td>1</td>
<td>37</td>
<td>Southeast Atlantic Basin</td>
<td>29</td>
</tr>
<tr>
<td>9</td>
<td>Hudson Bay</td>
<td>1</td>
<td>38</td>
<td>Southeast Pacific Basin</td>
<td>29</td>
</tr>
<tr>
<td>10</td>
<td>Southern Ocean</td>
<td>1*</td>
<td>39</td>
<td>Guatemala Basin</td>
<td>29</td>
</tr>
<tr>
<td>11</td>
<td>Arctic Ocean</td>
<td>1</td>
<td>40</td>
<td>East Caroline Basin</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>Sea of Japan</td>
<td>1</td>
<td>41</td>
<td>Marianas Basin</td>
<td>30</td>
</tr>
<tr>
<td>13</td>
<td>Kara Sea</td>
<td>8</td>
<td>42</td>
<td>Philippine Sea</td>
<td>30</td>
</tr>
<tr>
<td>14</td>
<td>Sulu Sea</td>
<td>10</td>
<td>43</td>
<td>Arabian Sea</td>
<td>30</td>
</tr>
<tr>
<td>15</td>
<td>Baffin Bay</td>
<td>14</td>
<td>44</td>
<td>Chile Basin</td>
<td>30</td>
</tr>
<tr>
<td>16</td>
<td>East Mediterranean</td>
<td>16</td>
<td>45</td>
<td>Somali Basin</td>
<td>30</td>
</tr>
<tr>
<td>17</td>
<td>West Mediterranean</td>
<td>19</td>
<td>46</td>
<td>Mascarene Basin</td>
<td>30</td>
</tr>
<tr>
<td>18</td>
<td>Sea of Okhotsk</td>
<td>19</td>
<td>47</td>
<td>Crozet Basin</td>
<td>30</td>
</tr>
<tr>
<td>19</td>
<td>Banda Sea</td>
<td>23</td>
<td>48</td>
<td>Guinea Basin</td>
<td>30</td>
</tr>
<tr>
<td>20</td>
<td>Caribbean Sea</td>
<td>23</td>
<td>49</td>
<td>Brazil Basin</td>
<td>31</td>
</tr>
<tr>
<td>21</td>
<td>Andaman Basin</td>
<td>25</td>
<td>50</td>
<td>Argentine Basin</td>
<td>31</td>
</tr>
<tr>
<td>22</td>
<td>North Caribbean</td>
<td>26</td>
<td>51</td>
<td>Tasman Sea</td>
<td>30</td>
</tr>
<tr>
<td>23</td>
<td>Gulf of Mexico</td>
<td>26</td>
<td>52</td>
<td>Atlantic Indian Basin</td>
<td>31</td>
</tr>
<tr>
<td>24</td>
<td>Beaufort Sea</td>
<td>28</td>
<td>53</td>
<td>Caspian Sea</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>South China Sea</td>
<td>28</td>
<td>54</td>
<td>Sulu Sea II</td>
<td>14</td>
</tr>
<tr>
<td>26</td>
<td>Barents Sea</td>
<td>28</td>
<td>55</td>
<td>Venezuela Basin</td>
<td>14</td>
</tr>
<tr>
<td>27</td>
<td>Celebes Sea</td>
<td>25</td>
<td>56</td>
<td>Bay of Bengal</td>
<td>1*</td>
</tr>
<tr>
<td>28</td>
<td>Aleutian Basin</td>
<td>28</td>
<td>57</td>
<td>Java Sea</td>
<td>6</td>
</tr>
<tr>
<td>29</td>
<td>Fiji Basin</td>
<td>29</td>
<td>58</td>
<td>East Indian Atlantic Basin</td>
<td>32</td>
</tr>
</tbody>
</table>

Basins marked with a “” can interact with adjacent basins in the objective analysis.
<table>
<thead>
<tr>
<th>Statistical field</th>
<th>One-degree field calculated</th>
<th>Five-degree field calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectively analyzed climatology</td>
<td>√</td>
<td>X</td>
</tr>
<tr>
<td>Statistical mean</td>
<td>√</td>
<td>X</td>
</tr>
<tr>
<td>Number of observations</td>
<td>√</td>
<td>X</td>
</tr>
<tr>
<td>Seasonal (monthly) climatology minus annual climatology</td>
<td>√</td>
<td>X</td>
</tr>
<tr>
<td>Standard deviation from statistical mean</td>
<td>√</td>
<td>X</td>
</tr>
<tr>
<td>Standard error of the statistical mean</td>
<td>√</td>
<td>X</td>
</tr>
<tr>
<td>Statistical mean minus objectively analyzed climatology</td>
<td>√</td>
<td>X</td>
</tr>
<tr>
<td>Number of mean values within radius of influence</td>
<td>√</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Response function of the WOA05, WOA01, WOA98, WOA94, and Levitus (1982) objective analysis schemes.
Figure 2. Scheme used in computing annual, seasonal, and monthly objectively analyzed means for dissolved oxygen, Apparent Oxygen Utilization (AOU), and oxygen saturation (O_2^s).
8. APPENDICES

8.1 Appendix A: Maps of the annual number of observations and distribution of dissolved oxygen (O_2) at selected depth levels (Pages 27 to 50).

8.2 Appendix B: Maps of the seasonal (winter, summer, fall, spring) number of observations, seasonal distribution of dissolved oxygen (O_2), and seasonal minus annual distribution of O_2 at selected depth levels (Pages 51 to 90).

8.3 Appendix C: Maps of the monthly number of observations, monthly distribution of dissolved oxygen (O_2), and monthly minus annual distribution of O_2 at selected depth levels (pages 91 to 150).

8.4 Appendix D: Maps of the annual distribution of Apparent Oxygen Utilization (AOU) at selected depth levels (Pages 150 to 166).

8.5 Appendix E: Maps of the seasonal (winter, summer, fall, spring) distribution of Apparent Oxygen Utilization (AOU) and seasonal minus annual distribution of AOU at selected depth levels (Pages 167 to 198).

8.6 Appendix F: Maps of the monthly distribution of Apparent Oxygen Utilization (AOU) and monthly minus annual distribution of AOU at selected depth levels (Pages 199 to 246).

8.7 Appendix G: Maps of the annual distribution of oxygen saturation (O_2^S) at selected depth levels (Pages 247 to 262).

8.8 Appendix H: Maps of the seasonal (winter, summer, fall, spring) distribution of oxygen saturation (O_2^S), and seasonal minus annual distribution of O_2^S at selected depth levels (Pages 263 to 294).

8.9 Appendix I: Maps of the monthly distribution of oxygen saturation (O_2^S), and monthly minus annual distribution of O_2^S at selected depth levels (Pages 295 to 342).